摘要
粮食安全是最根本的民生问题,云、雾等自然因素是影响遥感种植监测的主要因素之一,因此获取精准、高效的耕地种植监测信息对保障当地粮农安全、粮食估产及面积估算具有重要意义。在利用多时相植被指数(Multi-period Vegetation Index,以下简称植被MVI)合成模型的构建、农作物特征与耕地信息的可分离性两方面对高原山地农作物耕地面积提取的研究较少。该研究基于哨兵2(Sentinel-2)数据,构建了多时相植被指数合成模型,估算了2020—2021年归一化差异植被指数(Normalize Difference Vegetation Index,以下简称植被NDVI)、增强植被指数(Enhanced Vegetation Index,以下简称植被EVI)和红绿叶绿素植被指数(Red-Edge ChlorophyII Vegetation Index,以下简称植被RECI)3种植被指数的提取结果,研究了预测模型与高原山地农作物的相关性,探讨了不同植被指数模型对农作物的识别精度。结果表明:①多时相植被NDVI模型相较植被EVI和植被RECI对冬小麦面积提取精度更高,与云南高原山地冬小麦相关性最强,用户精度约为93.28%;②利用三期NDVI组合与2期植被NDVI组合均可对冬小麦精准提取,但3期植被NDVI模型提取精度更高。利用多时相植被NDVI模型对冬小麦种植面积的精准预测,证明了该模型可有效适用于云南高原山地冬小麦,并为当地冬小麦面积的预测提供了数据支撑。
Stability of food security is the most fundamental livelihood issue of the country,as key factor affecting remote sensing plant-ing monitoring,natural factors such as clouds and fog are key factors.Therefore,accurate and efficient rapid acquisition of cultivated land planting monitoring information is of great significance for ensuring food and agriculture security,grain yield estimation,and area estimation in the study area.At present,there are few studies on construction of Multi-period Vegetation Index(MVI)synthetic model and separability of crop characteristics and cultivated land information in remote sensing cultivated land monitoring.Based on Sentinel-2 data,a multi temporal vegetation index synthesis model was constructed to estimate extraction results of the Normalized Difference Ve-getation Index(NDVI),Enhanced Vegetation Index(EVI),and Red Edge Chlorophyll II Vegetation Index(RECI)from 2020 to 2021,correlation between prediction models and crops in high-altitude mountainous areas were studied,and accuracy of crop recogni-tion using different vegetation index models was explored.Result showed that,compared with EVI and RECI,multi-temporal NDVI model could better identify winter wheat with higher area extraction accuracy and has the strongest correlation with winter wheat in Yun-nan Plateau.The user accuracy was about 93.28%.Both three stage NDVI combination and two stage vegetation NDVI combination could accurately extract winter wheat,but extraction accuracy of three stage vegetation NDVI model was higher.Therefore,accurate prediction of winter wheat planting area using a multi temporal vegetation NDVI model proved that the model could be effectively applied to winter wheat in mountainous areas of Yunnan Plateau,and provided data support for prediction of local winter wheat area.
作者
杨永明
牛昱杰
安卫国
郭钰
颜定飞
YANG Yongming;NIU Yujie;AN Weiguo;GUO Yu;YAN Dingfei(College of Earth Science and Engineering,West Yunnan University of Applied Sciences,Dali Yunnan 671000,China;College of Land and Resources Engineering,Kunming University of Science and Technology,Kunming Yunnan 650031,China;Key Laboratory of Mountain Realistic Point Cloud Data Processing and Application in Yunnan Province,Dali Yunnan 671006,China;Multi Source Data Fusion Real Scene 3D Construction Research Technology Innovation Team,West Yunnan University of Applied Sciences,Dali Yunnan 671006,China;College of Civil and Architectural Engineering,Hainan University,Haikou Hainan 570228,China)
出处
《农业工程》
2023年第9期38-47,共10页
AGRICULTURAL ENGINEERING
关键词
植被指数
云南高原
山地冬小麦
多时相植被指数合成模型
哨兵-2
vegetation index
Yunnan Plateau
mountain winter wheat
multi-temporal vegetation index image fusion model
Sentinel-2