摘要
测井曲线在识别岩性、判别油气层、分析地层地质构造,以及计算孔隙度、渗透率和饱和度方面具有无可替代的作用。然而,在实际的测井数据应用时往往会遇到测井曲线因为仪器测量或者井眼坍塌等原因,造成某些井段部分测井曲线失真或间断性缺失的情况,重测不仅价格昂贵且操作困难。为此,提出基于多层感知器神经网络系统的测井曲线重构技术,基于训练数据建立曲线预测模型,该模型由1个输入层、1个输出层和1个或多个隐藏层组成。在模型中引入激活函数加入非线性因素,并且在模型训练学习时引入损失函数和MBGD(小批量梯度下降法)的最优化方法不断迭代寻求最优参数组合。最终通过预测曲线与原始测量曲线误差对比以进行质量控制,从而得到测井曲线重构的最佳结果。结果显示:通过该技术重构得到的曲线精度高、计算速度快、普适性强,便于在油田推广使用。
出处
《技术与市场》
2023年第12期86-88,92,共4页
Technology and Market