期刊文献+

基于自适应流形正则化自表示的无监督特征选择算法

Unsupervised Feature Selection Algorithm Based on Adaptive Manifold Regularization Self-representation
下载PDF
导出
摘要 针对基于流形正则化自表示(MRSR)的无监督特征选择算法直接从原始的样本空间构造相似矩阵可能会导致重构空间中样本的相似性描述得不够准确的问题,提出了基于自适应流形正则化自表示的无监督特征选择(AMRSR)算法。基于自适应流形正则化自表示的无监督特征选择算法在MRSR算法的基础上通过对相似矩阵施加概率最近邻约束将相似矩阵的学习嵌入到优化过程中,在重构空间中自适应地学习样本的相似性,使得在每一次迭代中获取更加精确的样本局部几何流形结构,从而选择具有代表性且保持局部几何流形结构的特征。最后,在四个公开数据集上进行了大量的对比实验,通过将算法的特征选择结果用于K-means聚类并采取两种常见的聚类评价指标:聚类精确度和归一化互信息评价聚类效果。实验结果表明,AMRSR算法与现有的一些算法相比有更高的聚类精确度和归一化互信息,进一步表明该算法特征选择效果更好。 Unsupervised feature selection algorithm based on manifold regularization self-representation(MRSR)directly constructed similarity matrix from the original sample space,which might lead to inaccurate similarity description of samples in the reconstructed space.To solve this problem,an unsupervised feature selection algorithm based on adaptive manifold regularization self-representation(AMRSR)was proposed.On the basis of MRSR algorithm,unsupervised feature selection algorithm based on adaptive manifold regularization self-representation embedded the learning of similar matrix into the optimization process by imposing probabilistic nearest neighbor constraints on similar matrix,and adaptively learned the similarity of samples in the reconstructed space,so that more accurate local geometric manifold structure of samples could be obtained in each iteration,and then representative features with local geometric manifold structure could be selected.Finally,a large number of comparative experiments were carried out on four public datasets.By applying the feature selection results of the algorithms to K-means clustering,two common clustering evaluation indexes were adopted:clustering accuracy and normalized mutual information to evaluate the clustering effect.Experimental results show that the AMRSR algorithm has higher clustering accuracy and normalized mutual information than some existing algorithms,which further indicates that the feature selection effect of this algorithm is better.
作者 宋雨 许王琴 李荣鹏 宋学力 肖玉柱 SONG Yu;XU Wangqin;LI Rongpeng;SONG Xueli;XIAO Yuzhu(School of Science,Chang’an University,Xi’an 710064,China)
机构地区 长安大学理学院
出处 《重庆工商大学学报(自然科学版)》 2023年第6期44-52,共9页 Journal of Chongqing Technology and Business University:Natural Science Edition
基金 长安大学中央高校基本科研业务费专项资金资助项目(310812163504).
关键词 无监督特征选择 自表示 流形正则化 自适应 相似矩阵 unsupervised feature selection self-representation manifold regularization adaptation similar matrix
  • 相关文献

参考文献6

  • 1汪志远..无监督特征选择方法研究[D].太原理工大学,2020:
  • 2周传华,柳智才,丁敬安,周家亿.基于filter+wrapper模式的特征选择算法[J].计算机应用研究,2019,36(7):1975-1979. 被引量:20
  • 3任超宏..基于特征级图学习的无监督特征选择算法研究[D].山西大学,2020:
  • 4刘波,何希平著..高维数据的特征选择 理论与算法[M].北京:科学出版社,2016:153.
  • 5徐彬..基于图的无监督特征选择算法研究[D].华东交通大学,2021:
  • 6丛思安,王星星.K-means算法研究综述[J].电子技术与软件工程,2018(17):155-156. 被引量:15

二级参考文献12

共引文献33

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部