期刊文献+

基于字向量的短文本情感分类研究

Research on Sentiment Analysis of Short Text Based on Word Vector
下载PDF
导出
摘要 针对中文短文本内容稀疏、上下文信息跨度大的问题,为进行有效的短文本情感分类,基于评论性短文本特征,使用预训练字向量,以字为单位输入模型来提高数据集的泛化性。使用多种经典深度学习分类模型验证基于字的短文本在外卖评论数据下的分类情况。实验结果表明,各模型均能准确判断短文本的情感倾向,检验了字向量的可行性及模型在情感分析方面的效果。各模型在基于字的评论短文本中的泛化性也为将来迁移学习和更深入的研究提供了价值参考。 Aiming at the problems of sparse content and large span of contextual information in Chinese short texts,in order to achieve more effective sentiment analysis of short texts,based on the characteristics of critical short texts,pre-trained word vectors are used to input the model in units of words to improve the generalization of data sets.Using a variety of classic deep learning classification models to verify the classification of word-based short texts under the data of take-away reviews.The experimental results show that each model can accurately judge the sentimental tendency of short texts,and test the feasibility of word vectors and the effect of the model in sentiment analysis.The generalization of each model in word-based review short texts also provides valuable reference for future transfer learning and further research.
作者 贾钰峰 李容 章蓬伟 邵小青 JIA Yufeng;LI Rong;ZHANG Pengwei;SHAO Xiaoqing(School of Information Science and Engineering,Xinjiang University of Science and Technology,Korla 841300,China;School of Marxism,Xinjiang University of Science and Technology,Korla 841300,China)
出处 《微处理机》 2023年第6期40-45,共6页 Microprocessors
基金 2021年度校级科研普通项目(2021-KYPT11)。
关键词 字向量 短文本 情感分类 Word vector Short text Sentiment analysis
  • 相关文献

参考文献5

二级参考文献54

  • 1张珊,于留宝,胡长军.基于表情图片与情感词的中文微博情感分析[J].计算机科学,2012,39(S3):146-148. 被引量:55
  • 2朱嫣岚,闵锦,周雅倩,黄萱菁,吴立德.基于HowNet的词汇语义倾向计算[J].中文信息学报,2006,20(1):14-20. 被引量:326
  • 3苏金树,张博锋,徐昕.基于机器学习的文本分类技术研究进展[J].软件学报,2006,17(9):1848-1859. 被引量:386
  • 4徐军,丁宇新,王晓龙.使用机器学习方法进行新闻的情感自动分类[J].中文信息学报,2007,21(6):95-100. 被引量:107
  • 5Fang L, Huang M L, Zhu X Y. Exploring weakly supervised latent sentiment explanations for aspect-level review analysis. In:Proceedings of the 22nd ACM International Conference on Conference on Information & Knowledge Management. New York, NY, USA:ACM, 2013.1057-1066. 被引量:1
  • 6赵妍妍, 秦兵, 刘挺. 基于图的篇章内外特征相融合的评价句极性识别. 自动化学报, 2010, 36(10):1417-1425. 被引量:1
  • 7Liu B. Sentiment Analysis and Opinion Mining. San Rafael, CA:Morgan Claypool Publishers, 2012. 被引量:1
  • 8Pang B, Lee L. Opinion mining and sentiment analysis. Foundations and Trends in Information Retrieval, 2008, 2(1-2):1-135. 被引量:1
  • 9Jo Y, Oh A H. Aspect and sentiment unification model for online review analysis. In:Proceedings of the 4th ACM International Conference on Web Search and Data Mining. New York, NY, USA:ACM, 2011.815-824. 被引量:1
  • 10He Y L, Lin C H, Alani H. Automatically extracting polarity-bearing topics for cross-domain sentiment classification. In:Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics:Human Language Technologies——Volume 1. Stroudsburg, PA, USA:Association for Computational Linguistics, 2011.123-131. 被引量:1

共引文献108

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部