期刊文献+

基于DAR-CapsNet的地基云图云分类

CLOUD CLASSIFICATION OF GROUND-BASED CLOUD IMAGES BASED ON DAR-CapsNet
下载PDF
导出
摘要 在当前地基云图分类任务中,存在识别准确率低等问题。为了提高云分类的精度,有效融合深度可分离卷积、注意力机制和残差结构的特点,构建DAR-CapsNet地基云图分类模型。首先,收集整理美国国家新能源实验室公开数据库中的地基云图,构建云分类数据库;然后,对所提出的DAR-CapsNet分类模型进行训练优化;最后,在不同数据集上验证所提出的分类模型性能。实验结果表明所提出的DAR-CapsNet分类模型,分类准确率高达95.50%,优于现有公开分类方法,且在不同数据集上具有较好的泛化性能。 In the current ground-based cloud image classification task,there are problems such as low recognition accuracy.In order to improve the accuracy of cloud classification,the DAR-CapsNet classification model for ground-based cloud images has been constructed by effectively integrating the features of depthwise separable convolution,attention mechanism and residual structure.Firstly,the ground-based cloud images were collected from the public database of the National New Energy Laboratory of the United States to build a cloud classification database;then,the proposed DAR-CapsNet classification model was trained and optimized;finally,experiments were conducted on different datasets to verify the performance of the proposed classification model.The experimental results show that the classification accuracy of the DAR-CapsNet model is as high as 95.50%,which is better than some published classification models,and the DAR-CapsNet model has better generalization performance on different datasets.
作者 魏亮 朱婷婷 过奕任 倪超 滕广 李岩 Wei Liang;Zhu Tingting;Guo Yiren;Ni Chao;Teng Guang;Li Yan(College of Mechanical and Electronic Engineering,Nanjing Forestry University,Nanjing 210037,China)
出处 《太阳能学报》 EI CAS CSCD 北大核心 2023年第11期189-195,共7页 Acta Energiae Solaris Sinica
基金 国家自然科学基金青年项目(62006120)。
关键词 光伏发电 气象云 图像分类 卷积神经网络 机器学习 photovoltaic power generation clouds image classification convolutional neural networks machine learning
  • 相关文献

参考文献10

二级参考文献75

共引文献62

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部