期刊文献+

基于深度学习的复合贝塞尔高斯光束大气湍流效应补偿

Atmospheric Turbulence Compensation Based on Deep Learning to Correct Distorted Composite Bessel-Gaussian Beam
原文传递
导出
摘要 相位失真是实现涡旋光束轨道角动量复用技术实际应用的主要挑战之一。本文提出了一种基于深度学习的复合贝塞尔高斯涡旋光束大气湍流效应补偿方法,以提高模态分离与检测准确度。设计的网络通过学习不同轨道角动量下畸变光束强度分布与湍流相位之间的映射关系,具备了适应未知湍流环境的泛化能力,可以有效地预测等效湍流相位屏。仿真结果表明,复合贝塞尔高斯光束在不同湍流强度下传输1000 m并经过相位补偿后,光强相关系数可提高至0.97以上;在强湍流下传输1500 m并经相位补偿后,拓扑荷数为10的模式纯度从2.43%提高至64.07%。该方法对畸变光束具有更强的特征提取能力,在快速准确预测等效湍流相位屏方面具有良好的泛化能力,有助于提高未来轨道角动量复用技术的可靠性。 Objective Atmospheric turbulence(AT)severely affects the transmission of vortex beams(VBs)transmitted in the atmosphere.Wavefront distortion,coherence destruction,and orthogonality destruction of multiplexed VBs are the main effects of AT,which directly increase crosstalk among channels and reduce communication performance.To improve the robustness of optical orbital angular momentum(OAM)communications,considerable efforts have been made to effectively compensate for the phase distortion of VBs.The adaptive optical method is widely used but requires multiple iterations and complicated hardware that is not affordable or easily operated by most researchers,causing tremendous difficulties for further study.Recently,taking advantage of powerful signal processing techniques,deep learning has been widely used in many fields such as image classification and optical communication,providing researchers with a new approach for addressing these problems.In this study,we propose a novel method of AT compensation based on a deep learning method to effectively correct the distorted composite Bessel-Gaussian(BG)vortex beam and improve the robustness of OAM multiplexing communication.Methods Using a deep learning method,we designed a new model called the phase extraction network(PhaNet),which combines a residual network with a feature pyramid for AT phase extraction(Fig.2).The PhaNet model can automatically learn the mapping relationship between the intensity distribution of the distorted beam and the turbulence phase under different orbital angular momenta.It contains seven convolutional layers,four residual layers,six deconvolution layers,and three feature fusion layers.A total of 96000 images of BG vortex beam intensity with a specified turbulence range were randomly generated,80000 of which were used as training data,with the remaining 16000 serving as test data.Following training with the loads of the studied samples,the PhaNet model was used to directly predict AT phase screens based on the intensity distribution of the di
作者 杜芊芊 韦宏艳 史晨寅 薛晓磊 贾鹏 Du Qianqian;Wei Hongyan;Shi Chenyin;Xue Xiaolei;Jia Peng(College of Optoelectronic Engineering,Taiyuan University of Technology,Taiyuan 030006,Shanxi,China)
出处 《中国激光》 EI CAS CSCD 北大核心 2023年第22期111-117,共7页 Chinese Journal of Lasers
基金 国家自然科学基金(61805173)。
关键词 光通信 复合贝塞尔高斯光束 大气湍流 深度学习 相位补偿 optics communications composite Bessel-Gaussian beam atmospheric turbulence deep learning phase compensation
  • 相关文献

参考文献9

二级参考文献71

  • 1张逸新,陶纯堪.湍流大气传输高斯谢尔光束的到达角起伏[J].光子学报,2005,34(3):424-427. 被引量:17
  • 2吴健 乐时晓.随机介质中的光传播理论[M].成都电讯工程学院出版社,1988.. 被引量:6
  • 3徐公权.光纤通信技术[M].北京:机械工业出版社,2002.437. 被引量:3
  • 4Andrews L C,Phillips R L,Hopen C Y.Theory of optical scintillation.J Opt Soc Am A,1999,16(6):1417~1429. 被引量:1
  • 5J. Torres and L. Torner, Twisted Photons: Applications of Light with Orbital Angular Momentum (Wiley, 2011). 被引量:1
  • 6A. Turpin, Y. Loiko, T. K. Kalkandjiev, and J. Mompart, Opt. Left. 37, 4197 (2012). 被引量:1
  • 7S. Shwartz, M. Golub, and S. Ruschin, Appl. Opt. 52, 2659 (2013). 被引量:1
  • 8J. Wang, J. Yang, I. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. Willner, Nat. Photon. 6, 488 (2012). 被引量:1
  • 9Y. Ren, H. Huang, G. Xie, N. Ahmed, Y. Yah, B. Erkmen, N. Chandrasekaran, M. Lavery, N. Steinhoff, M. Tur, S. Dolinar, M. Neifeld, M. Padgett, R. Boyd, J. Shapiro, and A. WiUner, Opt. Lett. 38, 4062 (2013). 被引量:1
  • 10Y. Ren, Z. Wang, P. Liao, L. Li, G. Xie, H. Huang, Z. Zhao, Y. Yah, N. Ahmed, A. WiUner, M. Lavery, N. Asherafi, S. Ashrafi, R. Bock, M. Tur, I. Djordjevic, M. Neifeld, and A. Willner, Opt. Lett. 41, 622 (2016). 被引量:1

共引文献102

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部