期刊文献+

基于涂覆石墨烯的双椭圆柱和圆柱并行纳米线波导的多极方法分析

Multipole Method Analysis of Waveguides Based on Graphene-Coated Double Elliptical and Cylindrical Parallel Nanowires
原文传递
导出
摘要 本文采用多级方法(MPM)对涂覆石墨烯的双椭圆和圆柱并行纳米线波导的基模的有效折射率进行了计算,并采用有限元法(FEM)对计算结果进行了验证。本文研究了两种计算方法的结果之间的相对误差随MPM展开项数的最大值、工作波长、费米能、椭圆柱形纳米线的半长轴及半短轴、纳米线表面之间的横向间距,以及圆柱形纳米线的相对高度等变化的规律。通过对照计算结果得到以下规律:随着级数展开项数增大,MPM的结果越接近FEM的结果;随着工作波长和费米能增大,有效折射率实部和虚部的相对误差均增大;随着圆柱形电介质纳米线的半径和椭圆柱形纳米线的半长轴增大,有效折射率实部的相对误差增大,而其虚部的相对误差减小;随着椭圆柱形纳米线的半短轴增大,有效折射率实部的相对误差减小,而其虚部的相对误差增大;随着纳米线表面之间的横向间距和圆柱形纳米线的相对高度增大,有效折射率实部和虚部的相对误差均减小。这些现象均可以通过场分布得到解释。在本文的计算范围内,相对误差均保持在10-3量级。该研究工作为混合型电介质并行纳米线波导的设计、制作和应用提供了理论基础。 Objective The waveguide structure based on graphene materials has been a research hotspot in recent years.By employing the finite element method(FEM),the characteristics of the five lowest-order modes supported by the waveguide based on graphene-coated double elliptical and cylindrical parallel nanowires were reported.Since a purely numerical method is adopted in this study,it is impossible to give a clear physical image of the mode formation mechanism.To this end,we intend to employ the multipole method(MPM)to reanalyze the fundamental mode of the waveguide structure discussed before,and give a clear physical image of the mode formation mechanism.Meanwhile,the MPM correctness is verified by comparing the relative error between the results of the two calculation methods with the maximum value of the term number expanded by the MPM,the working wavelength,the Fermi energy,the semi-major and semi-minor axes of the elliptical cylindrical nanowires,the lateral spacing between the surfaces of the nanowires,and the relative height of the cylindrical nanowires.Methods We leverage the MPM to calculate the characteristics of modes supported by the waveguide based on graphenecoated double elliptical and cylindrical parallel nanowires.First,we assume that the double elliptical cylindrical nanowires and the cylindrical nanowire exist alone and that the longitudinal components of the field are expanded into series form in their coordinate systems respectively.Then,according to the field superposition principle,the longitudinal components of the field in each region of the combined waveguide are obtained.Then,the radial and angular components of the field are obtained by the relationship between the lateral component and the longitudinal component of the field.The involved derivatives can be obtained via the gradient of the scalar field and the point product of the unit vector.Then,graphene is regarded as a conductor boundary without thickness,and a linear algebraic equation system is established by the boundary relationship an
作者 杜易达 李宁 薛文瑞 李慧慧 张越 李昌勇 Du Yida;Li Ning;Xue Wenrui;Li Huihui;Zhang Yue;Li Changyong(College of Physics and Electronic Engineering,Shanxi University,Taiyuan 030006,Shanxi,China;State Key Laboratory of Quantum Optics and Quantum Optics Devices,Institute of Laser Spectroscopy,Shanxi University,Taiyuan 030006,Shanxi,China;Collaborative Innovation Center of Extreme Optics,Shanxi University,Taiyuan 030006,Shanxi,China)
出处 《光学学报》 EI CAS CSCD 北大核心 2023年第22期197-207,共11页 Acta Optica Sinica
基金 国家自然科学基金(61378039,61575115) 国家基础科学人才培养基金(J1103210)。
关键词 石墨烯 纳米线 波导 多极方法 有限元法 graphene nanowires waveguides multipole method finite element method
  • 相关文献

参考文献4

二级参考文献29

  • 1K S Novoselov, A K Geim, S V Morozov, et al.. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696): 666- 669. 被引量:1
  • 2F Javier Garcfa de Abajo. Graphene plasmonics: Challenges and opportunities[J]. ACS Photonics, 2014, 1(3): 135-152. 被引量:1
  • 3A K Geim , K S Novoselov. The rise of graphene[J]. Nature Material, 2007, 6(3): 183-191. 被引量:1
  • 4F H Koppens, D E Chang, F J Garcia de Abajo. Graphene plasmonics: A platform for strong lightmatter interactions[J]. Nano Lett, 2011 11(8): 3370-3377. 被引量:1
  • 5A Vakil, N Engheta. Transformation optics using graphene[J]. Science, 2011,332(6035): 1291-1294. 被引量:1
  • 6M Jahlan, H Buljan, M Soljaoie, et al.. Plasmonies in graphene at infrared frequeneies[J]. Phys Rev B, 2009, 80(24): 245435. 被引量:1
  • 7Q Bao, K P Loh. Graphene photonies, plasmonics, and broadband optoelectronic devices[J]. ACS Nano, 2012, 6(5): 3677-3694. 被引量:1
  • 8F Bonaecorso, Z Sun, T Hasan, et al.. Graphene photonics and optoelectronics[J], Nat Ptotonics, 2010, 4(9): 611-622. 被引量:1
  • 9J Lao, J Tao, Q J Wang, et al.. Tunable graphene-based plasmonic waveguides: Nano modulators and nano attenuators[J]. Laser & Photonics Reviews, 2014, 8(4): 569-574. 被引量:1
  • 10A Y Nikitin, F Guinea, F J Garcia-Vidal, et al.. Edge and waveguide terahertz surface plasmon modes in graphene micro-ribbons[J]. Phys Rev B, 2011, 84(16): 161407. 被引量:1

共引文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部