期刊文献+

宽速域来流对超声通流风扇叶型气动性能的影响

Influence of wide-speed-range inflow on aerodynamic performance of supersonic through-flow fan cascade
原文传递
导出
摘要 掌握来流马赫数对超声通流风扇(STFF)叶型气动性能的影响对于保证STFF在宽速域下高效稳定运行具有重要意义。本文采用数值模拟方法,开展了宽广来流马赫数(Ma=0.10~2.36)对STFF叶型气动性能影响的研究,并着重讨论了大负攻角以及临界马赫数下叶栅流场结构的演变。研究发现:当来流从亚声速转变为跨声速时,叶栅通道内出现槽道激波,激波损失增加;同时槽道激波与相邻叶片吸力面附面层干扰诱发大尺度流动分离,黏性损失增加。Ma=0.6方案下流场结构随负攻角增加(−2º增至−4º)的演变与前述类似,不同点在于此时叶表并未发生大尺度流动分离。当来流从唯一攻角下的跨声速流态转变为0º攻角下的超声速流态,吸力侧前缘激波强度略微增大,同时前缘激波压力侧分支向叶栅通道上游移动,激波角增加,但波前马赫数降低,导致激波强度降低。在前述两激波的共同作用下,激波损失显著减小;前缘激波压力侧分支与相邻叶片吸力面附面层干扰强度减弱,黏性损失降低。当Ma=1.96、2.16且来流从负临界攻角增至负失速攻角,前缘激波吸力侧分支与相邻叶片压力面发生强烈干涉诱发了流动分离,黏性损失增加;分离区与主流构成的“虚拟压力面”使得前缘吸力侧激波由规则反射转变为马赫反射,前缘激波吸力侧分支在靠近压力面部分演变为马赫杆,激波损失增加。 It is of great significance to understand the influence of wide speed inflow on the aerodynamic performance of Supersonic Through-Flow Fan(STFF)cascades to ensure the efficient and stable operation of the STFF.In this pa⁃per,the influence of inlet Mach numbers ranging from 0.10 to 2.36 on the aerodynamic performance of the STFF cas⁃cade was studied by numerical simulation.The flow structure evolutions of the STFF cascade with large negative inci⁃dences and critical Mach numbers were emphatically discussed.The results are as follows.The change from sub⁃sonic to transonic incoming flow caused a passage shock in the flow passage and increased the shock loss.Simulta⁃neously,the interaction between the shock and the boundary layer of the adjacent blade suction surface induced large-scale flow separation and thus increased the viscosity loss.The evolution of the flow field structure with increasing negative incidences from−2°to−4°at a Mach number of 0.6 is similar to the above process.The difference was that no flow separation occurred on the blade surface in the latter case.The change of incoming flow from transonic flow regime under the condition of“unique incidence”to supersonic flow regime under the condition of 0°incidence slightly enhanced the shock intensity of the suction side branch of the leading-edge shock.Meanwhile,the pressure side branch of the leading-edge shock moved upstream resulting in a shock angle increase,while the Mach number ahead of the shock decreased.These two factors led to an intensity reduction of the pressure side branch of the leading-edge shock.Therefore,under the influence on both the suction and the pressure side of the leading-edge shock,the shock loss was eventually reduced.The interference between the pressure side branch of the leading-edge shock and the boundary layer of the adjacent blade suction surface was weakened,reducing the viscosity loss.In the cases of Ma=1.96 and 2.16 with an incidence varying from the negative critical value to the negative stall v
作者 孙士珺 李晓龙 刘艳明 王建华 王松涛 SUN Shijun;LI Xiaolong;LIU Yanming;WANG Jianhua;WANG Songtao(School of Aerospace Engineering,Beijing Institute of Technology,Beijing 100081,China;China State Shipbuilding Corporation Systems Engineering Research Institute,Beijing 100094,China;Scholl of Energy Science and Engineering,Harbin Institute of Technology,Harbin 150001,China)
出处 《航空学报》 EI CAS CSCD 北大核心 2023年第21期317-327,共11页 Acta Aeronautica et Astronautica Sinica
基金 国家自然科学基金(52006011) 北京理工大学青年教师学术启动计划(XSQD-202201002)。
关键词 轴向超声通流风扇 宽速域 来流马赫数 损失特性 激波结构 流动分离 axial supersonic through-flow fan wide speed range Mach number loss characteristics shock structure flow separation
  • 相关文献

参考文献6

二级参考文献40

  • 1Marshall J G, Imregum M A. Review of aeroelasticity methods with emphasis on turbomachinery applications [ J ]. Journal of Fluids and Structure,1996, 10(3) : 237 -267. 被引量:1
  • 2Bendiksen O O, Friedmann P P. The effect of bendingtorsion coupling on fan and compressor blade flutter [ J ]. ASME Journal of Engineering for Power, 1982,104(3). 被引量:1
  • 3Carta F O. Coupled blade-disc-shroud flutter instabilities in turbojet engine rotors [ J]. ASME Journal of Engineering for Power,1967, 89(3) :419 -426. 被引量:1
  • 4Hall K C, Lorence C B. Calculation of three-dimensional unsteady flows in turbomachinery using the linearized harmonic Euler equations [ R]. ASME 92-GT-136. 被引量:1
  • 5He L. Three-dimensional time-marching inviscid and viscous solutions for unsteady flows around vibrating blades [ R]. ASME 93-GT-92. 被引量:1
  • 6Ballhaus W F, Goorjina P M. Computation of unsteady transonic flows by the indicial method [ J ]. AIAA Journal, 1978, 16(2):117-124. 被引量:1
  • 7Vogt D M, Fransson T H. Aerodynamic influence coefficients on an oscillating turbine blade in three-dimensional high speed flow [ R]. Paper Presented at the 15th Symposium on Measuring Techniques in Transonic and Supersonic Flows in Cascades and Turbomachines, Florence, Italy, 2000. 被引量:1
  • 8Hanamura Y, Tanaka H, Yamaguchi Y. A simplified method to measure unsteady forces acting on the vibrating blades in cascade [J]. Bulletin of JSME, 1980,23(180). 被引量:1
  • 9Josef Panovsky Jr. Flutter of turbine blades, a design method to prevent low pressure turbine blade flutter [J]. Journal of Engineering for Gas Turbines and Power, 2000,89(122). 被引量:1
  • 10Kirschner A, Pelet C, Gyarmathy G. Investigation of blade flutter in a subsonic turbine cascade [ R ]. Symposium sur I' Aeroelasticite dans les Turbomachnes, Paris : Revue Francais de Macanique, Special Issue, 1976. 被引量:1

共引文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部