摘要
及时发现近海范围内出现的未知目标,并对其进行跟踪和识别,是维护海洋国土安全的重要一环。无人平台跨域协同搜索已被广泛应用于军事和民用任务,本文采用自主水下航行器(AUV)和无人机(UAV)来完成近海范围内水下目标的搜索和跟踪任务。整个任务过程可分为目标搜索和目标跟踪2个阶段,2个阶段的目标分别是使总搜索空间最大化以及AUV与水下目标的末端位置误差最小。首先,描述了搜索和跟踪任务,并建立了AUV&UAV跨域协同搜索模型;其次,设定了跨域协同搜索模型中的航行能力、探测距离、通信范围等各类约束;最后,在跨域协同搜索与跟踪规划中,分别基于改进遗传算法和异步规划策略,以集中式和分布式决策分别生成了搜索与跟踪路径。仿真实验表明,AUV&UAV跨域无人系统能够完成不同情况下的水下目标搜索与跟踪任务。
It is an important part for maintaining marine homeland security to detect unknown targets in the offshore area in time and track and identify them.Cross-domain collaborative search of unmanned platforms has been widely applied to military and civilian tasks.In this paper,Autonomous Underwater Vehicle(AUV)and Unmanned Aerial Vehicle(UAV)are used to perform the search and tracking tasks of underwater targets in offshore areas.The whole task pro⁃cess can be divided into two stages:target search and target tracking.The objective of the two stages is to maximize the total search space and minimize the end position error between AUV and underwater targets,respectively.Firstly,the search and tracking tasks are described,and the cross-domain collaborative search model of AUV&UAV is established.Secondly,various constraints such as navigation ability,detection distance and communication range in the cross-domain collaborative search model are set.Finally,in the cross-domain collaborative search and tracking planning,based on the improved genetic algorithm and the asynchronous planning strategy,the search and tracking paths are generated by centralized and distributed decision-making respectively.The simulation results show that the AUV&UAV cross-domain unmanned system can complete the underwater target search and tracking tasks under different conditions.
作者
丁文俊
柴亚军
侯冬冬
王驰宇
张国宗
毛昭勇
DING Wenjun;CHAI Yajun;HOU Dongdong;WANG Chiyu;ZHANG Guozong;MAO Zhaoyong(Unmanned System Research Institute,Northwestern Polytechnical University,Xi’an 710072,China;Research Institute of Xi’an Jiaotong University,Hangzhou 311200,China;Henan Key Laboratory of Underwater Intelligent Equipment,Zhengzhou 450015,China)
出处
《航空学报》
EI
CAS
CSCD
北大核心
2023年第21期206-217,共12页
Acta Aeronautica et Astronautica Sinica
基金
国家自然科学基金(51909206)
中国博士后科学基金(2021M692616)
陕西省自然科学基础研究计划(2019JQ-607)
浙江省自然科学基金(LQ20E090010)
中央高校基本科研业务费专项资金(31020200QD044)。
关键词
跨域无人系统
UAV
AUV
改进遗传算法
异步规划策略
cross-domain unmanned system
UAV
AUV
improved genetic algorithm
asynchronous planning strategy