摘要
随着量子密钥分发(QKD)系统的深入研究与应用,随机数的质量和产生速率面临着更大的挑战。为了满足随机数在QKD系统以及对于密钥安全性要求较高的场景下的使用,提出一种基于真空涨落产生真随机数的实验方案。相比于传统方案使用的2×2偏振分束器(BS),该方案采用单模1×2的BS来实现光路的传输,不仅节省了装置成本,同时还得到了较高的随机数产生速率。在9.68 dBm光强的作用下,得到量子噪声与经典噪声的信噪比为11.92 dB。对通过12 bit的模数转换器采集到的数据进行分析,结果显示经典噪声和真空散粒噪声均符合高斯分布,通过计算得到最小熵为9.92,原始数据经过安全性可被信息论证明的托普利茨(Toeplitz)后处理,最终实现7.6 Gbit/s的量子随机数产生,并且通过了Nist随机数标准测试,验证了方案的可行性。
With the deeper research and application of quantum key distribution(QKD),the quality and generation rate of random numbers are facing greater challenges.In order to meet the use of random numbers in QKD system and in the scenarios with high requirements for key security,an experimental scheme for generating true random numbers based on vacuum fluctuations is presented.Compared with the 2×2 polarization beam splitter(BS)used in traditional solution,a single mode 1×2 BS is used in the proposed scheme to realize the transmission of optical path,which not noly saves device costs but also obtains a high random number generation rate.Under the action of 9.68 dBm light intensity,the signal-to-noise ratio of quantum noise to classical noise of 11.92 dB is obtained.The data collected through a 12 bits analog-to-digital converter is analyzed.The results show that both the classical noise and the vacuum shot noise are in accordance with Gaussian distribution,and the calculated minimum entropy is 9.92.The original data is subjected to Toeplitz post-processing,whose security can be proved according to information theory.Finally,the quantum random number generation with the rate of 7.6 Gbit/s is acheived,and it successfullly passes the NIST random number standard test,verifying the feasibility of the scheme.
作者
金振阳
万相奎
廖涛
陈柳平
JIN Zhenyang;WAN Xiangkui;LIAO Tao;CHEN Liuping(Hubei Key Laboratory for High-efficiency Utilization of Solar Energy and Operation Control of Energy Storage System,Hubei University of Technology,Wuhan 430068,China;QUDOOR,Beijing 102629,China)
出处
《量子电子学报》
CAS
CSCD
北大核心
2023年第6期933-942,共10页
Chinese Journal of Quantum Electronics
基金
国家自然科学基金(61571182)。
关键词
量子通信
真空涨落
量子随机数
最小熵
后处理
quantum communication
vacuum fluctuation
quantum random number
minimum entropy
post processing