期刊文献+

焦炉煤气典型组分热重整反应平衡常数分析

Equilibrium Constant Analysis of Thermal Reforming Reaction of Typical Components of Coke Oven Gas
下载PDF
导出
摘要 焦炉煤气非催化热重整,转化为合成气是一条有效的资源化路线。焦炉煤气重整涉及多种化学物质,反应复杂。本文针对焦炉煤气中关键代表组分的重整,进行相关反应的化学热力学平衡常数分析,推断有机烃的转化率和合成气组成。研究发现,焦炉煤气中甲烷重整反应的平衡常数较小,只有提高温度至1 200℃以上,才能保证甲烷转化。在O2、水蒸气混合气氛中,反应温度达到1 000℃以上,上述有机烃类几乎完全转化;荒煤气中加入O2可以提高反应温度,提升化学反应速率。在焦炉煤气热重整体系中,维持一定的温度和水蒸气浓度,荒煤气中的有机组成可以完全转化为合成气,化学反应热力学并不是重整反应的限制因素。提升重整反应速度,突破反应动力学限制是工艺技术开发的关键。 Coke oven gas non-catalytic thermal reforming to synthesis gas is an effective resource route.Coke oven gas reforming involves many chemicals and the reaction is complex.The research work of this paper is to analyze the chemical thermodynamic equilibrium constants of the related reactions for the reforming of key representative components in coke oven gas,and infer the conversion rate of organic hydrocarbons and the composition of synthesis gas.The research shows that the equilibrium constant of methane reforming reaction in coke oven gas is small,and only by raising the temperature to above 1200℃can methane conversion be guaranteed.The reaction temperature reached above 1000℃in the mixed atmosphere of O2 and steam,and the organic hydrocarbons were almost completely converted.Adding O2 into raw gas can increase the reaction temperature and the chemical reaction rate.In the thermal reforming system of coke oven gas,the organic composition in raw gas can be completely converted into synthesis gas by maintaining a certain temperature and steam concentration,and the thermodynamics of chemical reaction is not the limiting factor of reforming reaction.It is the key to improve the speed of reforming reaction and break through the limitation of reaction kinetics.
作者 董靖 Dong Jing(Shanghai Electric Guokong Global Engineering Co.,Ltd.,Taiyuan Shanxi 030001,China)
出处 《山西化工》 CAS 2023年第11期70-72,共3页 Shanxi Chemical Industry
关键词 焦炉煤气 热重整 反应平衡 coke oven gas thermal reforming reaction equilibrium
  • 相关文献

参考文献6

二级参考文献25

  • 1晏水平,方梦祥,王金莲,骆仲泱,岑可法.烟气CO_2吸收分离工艺再生能耗的分析与模拟[J].动力工程,2007,27(6):969-974. 被引量:16
  • 2Kar Mun Pang,Hoon Kiat Ng,Suyin Gan.Development of an integrated reduced fuel oxidation and soot precursor formation mechanism for CFD simulations of diesel combustion[J].Fuel.2011(9) 被引量:1
  • 3Shijin Shuai,Neerav Abani,Takeshi Yoshikawa,Rolf D. Reitz,Sung Wook Park.Evaluation of the effects of injection timing and rate-shape on diesel low temperature combustion using advanced CFD modeling[J].Fuel.2009(7) 被引量:1
  • 4Shuhong Liu,Wenzhao Li,Yuzhong Wang,Hengyong Xu.Catalytic partial oxidation of methane to syngas in a fixed-bed reactor with an O 2 -distributor: The axial temperature profile and species profile study[J].Fuel Processing Technology.2008(12) 被引量:1
  • 5M. Zahedi nezhad,S. Rowshanzamir,M.H. Eikani.Autothermal reforming of methane to synthesis gas: Modeling and simulation[J].International Journal of Hydrogen Energy.2008(3) 被引量:1
  • 6Nor Aishah Saidina Amin,Tung Chun Yaw.Thermodynamic equilibrium analysis of combined carbon dioxide reforming with partial oxidation of methane to syngas[J].International Journal of Hydrogen Energy.2007(12) 被引量:1
  • 7O.L. Ding,S.H. Chan.Autothermal reforming of methane gas—Modelling and experimental validation[J].International Journal of Hydrogen Energy.2007(2) 被引量:1
  • 8Sakae Takenaka,Hiroshi Umebayashi,Eishi Tanabe,Hideki Matsune,Masahiro Kishida.Specific performance of silica-coated Ni catalysts for the partial oxidation of methane to synthesis gas[J].Journal of Catalysis.2006(2) 被引量:1
  • 9Q.G. Yan,T.H. Wu,W.Z. Weng,H. Toghiani,R.K. Toghiani,H.L. Wan,C.U. Pittman.Partial oxidation of methane to H 2 and CO over Rh/SiO 2 and Ru/SiO 2 catalysts[J].Journal of Catalysis.2004(2) 被引量:1
  • 10L Basini,K Aasberg-Petersen,A Guarinoni,M ?stberg.Catalytic partial oxidation of natural gas at elevated pressure and low residence time[J].Catalysis Today.2001(1) 被引量:1

共引文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部