期刊文献+

无资料地区水文模型参数移植不确定性分析 被引量:3

Uncertainties of model parameters regionalization in ungauged basins
下载PDF
导出
摘要 无资料地区降水径流模拟是水文学研究的国际前沿和热点问题。水文模型参数移植是无资料地区降水径流模拟的重要方法,对径流模拟精度具有重要的影响。利用核密度估计和蒙特卡罗随机模拟等方法,构建了一种水文模型参数移植误差驱动的无资料地区径流模拟不确定性定量评估框架。以广西壮族自治区42个有水文监测站点的典型中小河流为研究对象,率定新安江模型参数并模拟日径流和洪水过程,将42个典型流域依次假定为无资料流域,利用基于回归分析、相似流域和机器学习的参数移植方法,模拟无资料地区的洪水过程并识别最优的参数移植方法,分析移植法估算的模型参数值和直接率定值相比误差的概率分布特征,定量评估模型参数移植误差带来的径流模拟不确定性。研究结果表明:(1)基于回归分析的参数移植法模拟无资料地区洪水过程的精度优于相似流域法,优选的机器学习算法比传统回归分析法和相似流域法的计算精度提高了7%~15%;(2)与模型参数率定值相比,移植方法计算的模型参数具有一定的误差,对洪水模拟敏感参数的误差小于不敏感参数;(3)受模型参数移植误差的影响,利用蒙特卡罗法随机模拟的洪水过程具有一定的不确定性,洪量和洪峰相对误差的主要区间分别为10%~30%和10%~40%。相关成果为无资料地区的径流概率模拟及不确定性评估提供了一种新的技术,对中小河流洪水预报与防洪减灾具有一定的支撑作用。 Prediction in ungauged basins is a challenge and hot issue.Parameters regionalization is a useful methodology estimating hydrological model parameters in ungauged basins and has a critical effect on streamflow simulation.With kernel density estimation and Monte Carlo stochastic simulation methods,a framework was constructed to assess the uncertainty of simulated streamflow caused by parameters′error estimated by regionalization methodology.The Xin′anjiang model was applied for streamflow simulation in 42 small and medium-sized catchments with observed hydrologic stations located in the Guangxi Province.As each catchment being supposed an ungauged basin,the parameters of the Xin′anjiang model were calculated by regionalization methodologies including regression-based,similarity-based,and machine learning-based methodology.The performance of flood simulation using regression-based methodology was better than that of the similarity-based methodology.Using optimized machine learning-based regionalization methodology,the flood simulation accuracy was improved by 7%-15%.Compared with calibrated values,there were pronounced errors of model parameters estimated by parameters regionalization methodologies.The errors of sensitive parameters were lower than non-sensitive ones.The results indicated that there were significant uncertainties of randomly modeled floods by Monte Carlo methodology.The relative errors of simulated flood volumes and peak discharges were 10%-30%and 10%-40%,respectively.The results could provide a new technique for streamflow probability modeling and uncertainty assessment in ungauged basins.And this would be useful for flood forecasting and disaster prevention in small and medium-sized rivers.
作者 关铁生 鲍振鑫 贺瑞敏 杨艳青 吴厚发 GUAN Tiesheng;BAO Zhenxin;HE Ruimin;YANG Yanqing;WU Houfa(The National Key Laboratory of Water Disaster Prevention,Nanjing Hydraulic Research Institute,Nanjing 210029,China;Research Center for Climate Change of MWR,Nanjing 210029,China;Yangtze Institute for Conservation and Development,Nanjing 210098,China;Institute of Mountain Hazards and Environment,Chinese Academy of Sciences,Chengdu 610299,China)
出处 《水科学进展》 EI CAS CSCD 北大核心 2023年第5期660-672,共13页 Advances in Water Science
基金 国家重点研发计划资助项目(2022YFC3205200) 国家自然科学基金资助项目(41961124007)。
关键词 无资料地区 径流模拟 不确定性 新安江模型 参数移植 ungauged basin streamflow simulation uncertainty Xin′anjiang model parameters regionalization
  • 相关文献

参考文献12

二级参考文献153

共引文献185

同被引文献33

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部