期刊文献+

完全植入式静脉输液港相关血流感染风险预测模型研究进展

Progress of research on risk prediction model for TIVAP-related bloodstream infection
原文传递
导出
摘要 完全植入式静脉输液港(TIVAP)的出现,极大地减少了患者因静脉穿刺而造成的痛苦,提高了患者的生活质量,而导管相关血流感染是TIVAP最严重的并发症之一,影响患者治疗及预后.本文通过对消化道肿瘤患者TIVAP相关血流感染风险的列线图模型、乳腺癌患者TIVAP相关血流感染预测Logistic模型、机器学习预测中心静脉输液装置相关血流感染模型、数据挖掘预测中心静脉输液装置相关血流感染模型的系统回顾以及对国内外研究中TIVAP相关血流感染风险预测模型的研究方法和危险因素进行对比分析,得到良好的TIVAP相关血流感染风险预测模型应当具备明确的适用人群、纳入合理的危险因素、严格的内外部验证以及实用的模型形式的结论,以期为国内TIVAP相关血流感染风险预测模型的构建提供经验. The emergence of totally implantable venous access ports(TIVAP)greatly alleviates the pain caused by venipuncture and maximizes the quality of life of patients.Catheter-related bloodstream infection is one of the most severe complications of TIVAP,affecting the treatment and prognosis of patients.A systematic review was conducted for nomogram model for risk of TIVAP-related bloodstream infection in gastrointestinal tumor patients,logistic model for prediction of TIVAP-related bloodstream infection in breast cancer patients,machine learning model for central venous transfusion device-related bloodstream infection and data mining model for central venous transfusion device-related bloodstream infection,the study methods for risk prediction models and risk factors for TIVAP-related bloodstream infection in China and abroad were observed and compared,it comes to a conclusion that a favorable risk prediction model for TIVAP-related bloodstream infection should have four basic conditions:clear applicable population,standard model parameters,strict internal and external verification,and practical model form so as to provide experience for building up the risk prediction model for TIVAP-related bloodstream infection in China.
作者 陈陈 周静 CHEN Chen;ZHOU Jing(The First Medical Center,Chinese PLA General Hospital,Beijing 100853,China)
出处 《中华医院感染学杂志》 CAS CSCD 北大核心 2023年第22期3516-3520,共5页 Chinese Journal of Nosocomiology
基金 军队医学科技青年培育计划孵化基金资助项目(20DNPY102)。
关键词 完全植入式静脉输液港 完全植入式静脉输液港相关血流感染 风险因素 预测模型 机器学习 数据挖掘 Totally implantable venous access port TIVAP-related bloodstream infection Risk factor Prediction model Machine learning Data mining
  • 相关文献

参考文献5

二级参考文献55

共引文献52

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部