期刊文献+

基于IOWGA算子的生态足迹组合预测模型研究

Research on Ecological Footprint Combination Prediction Model Based on IOWGA Operator
下载PDF
导出
摘要 随着经济水平的不断发展,我国生态资源与环境正面临着巨大的压力与挑战。作为衡量自然生态资源与环境状况的重要指标,生态足迹的准确预测对于制定自然资源保护与环境治理政策具有重要意义。本文基于2003至2014年安徽省各生物资源及能源消费量,计算了各年人均生态足迹,并采用灰色GM模型、长短期记忆神经网络模型、差分自回归移动平均模型作为单项模型进行预测,建立了基于诱导有序几何加权平均算子(IOWGA)的人均生态足迹组合预测模型,并将组合预测模型与单项预测模型进行比较。结果表明,组合预测模型对人均生态足迹的拟合程度较好,具有较高预测精度。 With the continuous development of economic level,China's ecological resources and environment are facing enormous pressure and challenges.As an important indicator for measuring natural ecological resources and environmental conditions,accurate prediction of ecological footprint is of great significance for formulating policies for natural resource protection and environmental governance.This article is based on the consumption of various biological resources and energy in Anhui Province from 2003 to 2014,calculates the per capita ecological footprint for each year,and uses the grey GM model,short-term memory neural network model,and differential autoregressive moving average model as individual models for prediction.A combined prediction model for per capita ecological footprint based on the induced ordered geometric weighted average operator(IOWGA)is established,and the combined prediction model is compared with the individual prediction model.The results indicate that the combination prediction model has a good fitting degree for the per capita ecological footprint and has high prediction accuracy.
作者 陈兆言 张康静 CHEN Zhao-yan;ZHANG Kang-jing(School of Statistics and Applied Mathematics,Anhui University of Finance and Economics,Bengbu 233030,China)
出处 《价值工程》 2023年第33期124-126,共3页 Value Engineering
基金 安徽省科研编制计划项目(2022AH050608) 安徽财经大学科学研究基金项目(ACYC2021407) 安徽财经大学科研项目(ACKYA22001)研究成果。
关键词 生态足迹 时间序列 灰色预测 神经网络 ARIMA IOWGA算子 ecological footprint time series gray prediction neural network ARIMA IOWGA operator
  • 相关文献

参考文献11

二级参考文献141

共引文献1148

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部