期刊文献+

球磨时间对含镁高熵合金MgTiV_(2)NiCr_(0.2)储氢性能影响

Effects of Milling Time on Hydrogen Storage Properties of Magnesium-containing MgTiV_(2)NiCr_(0.2)High Entropy Alloys
原文传递
导出
摘要 采用高能球磨法制备含镁高熵合金MgTiV_(2)NiCr_(0.2),研究了球磨时间对合金微观组织结构、储氢性能的影响。结果表明,随球磨时间延长,合金元素逐渐固溶,球磨20 h后形成简单的BCC固溶体相,但进一步延长球磨时间,Mg易被氧化;在6 MPa、573 K下球磨20 h的合金达到最大吸氢量为1.17%(质量分数,下同),动力学性能逐渐改善。随着球磨时间进一步延长,MgO出现,吸氢量及动力学性能逐渐变差。 The magnesium-containing MgTiV_(2)NiCr_(0.2)high entropy alloys were prepared by high-energy ball-milling,and effects of different milling time on microstructure,hydrogen storage properties of high entropy alloys were investigated.The results indicate that the alloying elements are gradually solutionized with the increase of milling time.The single BCC solid phase can be obtained after milling for 20 h,while Mg is easily oxidized with further increase of milling time.Hydrogen storage capacity of the alloy reaches to maximum value of 1.17%at 6 MPa and 573 K,and kinetics performance is obviously enhanced.MgO appears with further prolonging of ball-milling time,and the hydrogen absorption capacity and kinetics gradually become worse.
作者 高志杰 李凯 罗永春 Gao Zhijie;Li Kai;Luo Yongchun(Department of Chemical Engineering and Safety,Binzhou University;School of Materials Science and Engineering,Lanzhou University of Technology;Tianmen Municipal Bureau of Housing and Urban-Rural Development)
出处 《特种铸造及有色合金》 CAS 北大核心 2023年第11期1493-1496,共4页 Special Casting & Nonferrous Alloys
基金 山东省自然科学基金资助项目(ZR2021ME105) 山东省中小型科技企业提升创新工程资助项目(2021TSGC1172)。
关键词 高熵合金 高能球磨 微观组织 储氢性能 High Entropy Alloys High-energy Ball-milling Microstructure Hydrogen Storage Property
  • 相关文献

参考文献6

二级参考文献80

  • 1Schlabach L, Zuttel A. Hydrogen-Storage Materials for Mobile Applications[J]. Nature, 2001, 414:353-358. 被引量:1
  • 2Lei Yongquan(雷永泉),Wan Qun(万群),Shi Yongkang(石永康).New Energy Source Materials(新能源材料)[M],Tianjin: Tianjin University Press, 2002, 23 -44. 被引量:1
  • 3IEA Hydrogen Co-Ordination Group. Hydrogen Production and Storage. www. iea. org/Textbase/papers/2006/hydrogen, pdf. 被引量:1
  • 4Zuttel A. Materials for Hydrogen Storage[ J]. Materials Today, 2003(6) : 24 -33. 被引量:1
  • 5Zaluska A, Zaluski L, Strom-Olsen J O. Nanocrystalline Metal Hydrides[J]. JAlloys Compd, 1997, 253: 70-79. 被引量:1
  • 6Bogdanovic B, Schwichardi M. Ti-Doped Alkali Metal Alminum Hydrides as Potential Novel Reversible Hydrogen Storage Materials [J]. JAlloys Compd, 1997, 253:1-9. 被引量:1
  • 7Dillion A C, Jones K M, Bekkedahl T A, et al. Storage of Hydrogen in Single-Walled Carbon Nanotubes [ J ]. Nature, 1997, 386 : 377 - 379. 被引量:1
  • 8Rosi N L, Eckert J, Eddaoudi M, et al. Hydrogen Storage in Microporous Metal-Organic Frameworks [ J ]. Science, 2003, 300:1 127-1 129. 被引量:1
  • 9Chen P, Xiong Z T, Luo J Z, et al. Interaction of Hydrogen with Metal Nitrides and Imides[J].Nature, 2002, 420: 302- 304. 被引量:1
  • 10Xiong Z T, Yong C K, Wu G T, et al. High-Capacity Hydrogen Storage in lithium and Sodium Amidoboranes [ J ]. Nat Mater, 2008(7): 138. 被引量:1

共引文献73

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部