期刊文献+

BI-RADS 4类病变MRI亚分类方法初步探讨

Preliminary study on subclassification of lesions with BI-RADS Category 4 by MRI
下载PDF
导出
摘要 目的:探讨合理简便的乳腺影像报告和数据系统(BI-RADS)4类病变MRI亚分类方法。方法:收集424例行MRI检查且经病理证实的乳腺病变患者。其中肿块样强化病变302例,采用Fischer’s评分联合ADC值进行亚分类;非肿块样强化病变122例,分析其MRI征象,采用ROC曲线确定ADC值的最佳诊断界值,采用Logistic回归分析建立多参数评分模型进行亚分类。以病理为金标准,计算BI-RADS 4a、4b、4c类病变的阳性预测值,并以BI-RADS 4b为诊断界值计算诊断的敏感度、特异度,分析其与病理结果的一致性。结果:BI-RADS 4类病变共165例,其中4a类病变52例,4b类病变41例,4c类病变72例。ROC曲线分析发现,以BI-RADS 4b类为恶性的诊断界值,敏感度和特异度分别为96.77%、81.44%。Kappa一致性分析发现,以BI-RADS 4b类病变为良恶性的诊断界值,与病理结果的一致性显著(K=0.787)。结论:采用多参数鉴别诊断模型可提高乳腺病变诊断的准确率,是一种可靠的、能快速掌握的BI-RADS 4类疾病的MRI亚分类方法。 Objective:To investigate a reasonable and simple method for the subclassification of breast lesions with BI-RADS Category 4.Methods:A total of 424 patients with breast lesions after MRI examination were collected.302 lesions with mass-like enhancement(MLE)was subclassified by Fischer’s score combined with the ADC value.The MRI features of the other 122 lesions with non-MLE(NMLE)were analyzed,and the ROC curve was used to determine the cutoff for ADC values,and logistic regression analysis was used to establish a multiparameter scoring model for subclassification.Taking the pathological results as the gold standard,the positive predictive values of Category 4a,4b and 4c lesions were calculated,the sensitivity and specificity were calculated with Category 4b as the diagnostic cutoff value,and Kappa test was used to analyze their consistency with pathological results.Results:There were 165 lesions of BI-RADS Category 4,including 52 lesions of Category 4a,41 lesions of Category 4b and 72 lesions of Category 4c.ROC curve shwed that,taking BI-RADS Category 4b as the cutoff for the diagnosis of malignant lesions,the sensitivity and specificity were 96.77%and 81.44%,respectively.Kappa analysis showed that Category 4b lesions were used as the malignant cutoff value,which was significantly consistent with the pathological results(K=0.787).Conclusion:The multi-parameter differential diagnosis model enhances the diagnostic precision of breast lesions,offering a dependable subclassification method.
作者 刘丹丹 吕花营 刘俊业 王巧慧 巴照贵 LIU Dandan;LYV Huaying;LIU Junye;WANG Qiaohui;BA Zhaogui(Department of Medical Imaging,Eighth People’s Hospital of Jinan,Jinan 271126,China)
出处 《中国中西医结合影像学杂志》 2023年第6期652-655,662,共5页 Chinese Imaging Journal of Integrated Traditional and Western Medicine
基金 济南市科技计划项目(202019011)。
关键词 乳腺疾病 乳腺影像报告和数据系统 磁共振成像 亚分类 Breast diseases Breast imaging-reporting and data system Magnetic resonance imaging Subcategorization
  • 相关文献

参考文献9

二级参考文献70

  • 1赫捷,陈万青.2012中国肿瘤登记年报[M].北京:军事医学科学出版社,2012:12-25. 被引量:197
  • 2Yabuuchi H, Matsuo Y,Kamitani T, et al. Non-mass- like enhancement on contrast-enhanced breast MR ima- ging: lesion characterization using combination of dy- namic contrast-enhanced and diffusion-weighted MR images[J]. Eur J Radiol,2010,75(1) :e126-e132. 被引量:1
  • 3Kuhl CK, Mielcareck P, Klaschik S, et al. Dynamic breast MR imaging: are signal intensity time course da- ta useful for differential diagnosis of enhancing lesions? [J]. Radiology,1999,211(1) :101-110. 被引量:1
  • 4Cheng L, Li X. Breast magnetic resonance imaging: non-mass-like enhancement[J]. Gland Surg, 2012, 1(3): 176-188. 被引量:1
  • 5Jansen SA, Fan X, Karczmar GS, et al. DCEMRI of breast lesions: is kinetic analysis equally effective for both mass and nonmass-like enhancement? [J]. Med Phys,2008,35(7) :3102-3109. 被引量:1
  • 6Liherman L, Morris EA, Lee MJ, et al. Breast lesions detected on MR imaging: features and positive predic tive value[J]. AJR Am J Roentgenoi, 2002,179 (1) : 171-178. 被引量:1
  • 7Japan Association of Breast and Thyroid Sonography. Guideline for breast ultrasound-management and diagnosis[M]. Japan: Tokyo, 2004: 35-37; 53-60. 被引量:1
  • 8Uematsu T. Non-mass-like lesions on breast uhrasonography: a systematic review[J]. Breast Cancer, 2012, 19(4): 295-301. 被引量:1
  • 9Ko KH, Hsu HH, Yu JC, et al. Non-mass-like breast lesions at uhrasonography: feature analysis and BI-RADS assessment[J]. Eur I Radiol, 2015, 84(1): 77-85. 被引量:1
  • 10Hsu HH, Yu JC, Hsu GC, et al. Uhrasonographie alterations as- sociated with the dilatation of mammary duets: feature analysisand BI-RADS assessment[J]. Eur Radiol, 2010, 20(2): 293-302. 被引量:1

共引文献1005

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部