期刊文献+

基于改进STDC的井下轨道区域实时分割方法

Real time segmentation method for underground track area based on improved STDC
下载PDF
导出
摘要 目前中国大部分井下轨道运输场景较为开放,存在作业人员、散落物料或煤渣侵入到轨道上的问题,从而给机车行驶带来威胁。煤矿井下轨道区域多呈线性或弧形不规则区域,且轨道会逐渐收敛,采用目标识别框或检测轨道线的方法划分轨道区域难以精确获得轨道范围,采用轨道区域的分割可实现像素级别的精确轨道区域检测。针对目前井下轨道区域分割方法存在边缘信息分割效果差、实时性低的问题,提出了一种基于改进短期密集连接(STDC)网络的轨道区域实时分割方法。采用STDC作为骨干架构,以降低网络参数量与计算复杂度。设计了基于通道注意机制的特征注意力模块(FAM),用于捕获通道之间的依赖关系,对特征进行有效的细化和组合。使用特征融合模块(FFM)融合高级语义特征与浅层特征,并利用通道和空间注意力丰富融合特征表达,从而有效获取特征并减少特征信息丢失,提升模型性能。采用二值交叉熵损失、骰子损失及图像质量损失来优化详细信息的提取,并通过消除冗余结构来提高分割效率。在自建的数据集上对基于改进STDC的轨道区域实时分割方法进行验证,结果表明:该方法的平均交并比(MIoU)为95.88%,较STDC提高了3%;参数量为6.74 MiB,较STDC降低了18.3%;随着迭代次数增加,优化后的损失函数值持续减小,且较STDC降低更为明显;基于改进STDC的轨道区域实时分割方法的MIoU达95.88%,帧速率为37.8帧/s,参数量为6.74 MiB,准确率为99.46%。该方法可完整识别轨道区域,轨道被准确地分割且边缘轮廓完整准确。 Currently,most underground rail transportation scenarios in China are relatively open.There are problems of operators,scattered materials,or coal slag invading the track.It poses a threat to locomotive operation.The underground track area of coal mines often presents linear or arc-shaped irregular areas,and the track gradually converges.It is difficult to accurately obtain the track range by using object recognition boxes or detecting track lines to divide the track area.Using track area segmentation can achieve pixel level accurate track area detection.Aiming at the problems of poor edge information segmentation and low real-time performance in current underground track area segmentation methods,a real-time track area segmentation method based on improved network short-term dense concatenate(STDC)is proposed.STDC is adopted as the backbone architecture to reduce the amount of network parameters and computational complexity.A feature attention module(FAM)based on channel attention mechanism is designed to capture the dependency relationships between channels and effectively refine and combine features.The feature fusion module(FFM)is used to fuse advanced semantic features with shallow features.The channel and spatial attention are utilized to enrich the fusion feature expression,effectively obtaining features and reducing feature information loss,improving model performance.Binary cross entropy loss,dice loss,and image quality loss are used to optimize the extraction of detailed information,and to improve segmentation efficiency by eliminating redundant structures.By verifying on a self built dataset,the results show the following points.The mean intersection over union(MIoU)of the improved STDC based real-time segmentation method for track area is 95.88,which is 3%higher than STDC.The number of parameters is 6.74 MiB,which is 18.3%lower than STDC.As the number of iterations increases,the optimized loss function value continues to decrease,and the decrease in function value is more significant than that of the o
作者 马天 李凡卉 杨嘉怡 张杰慧 丁旭涵 MA Tian;LI Fanhui;YANG Jiayi;ZHANG Jiehui;DING Xuhan(College of Computer Science and Technology,Xi'an University of Science and Technology,Xi'an 710054,China;College of Safety Science and Engineering,Xi'an University of Science and Technology,Xi'an 710054,China)
出处 《工矿自动化》 CSCD 北大核心 2023年第11期107-114,共8页 Journal Of Mine Automation
基金 国家重点研发计划项目(2021YFB4000905) 国家自然科学基金项目(62101432,62102309) 陕西省自然科学基础研究计划项目(2022JM-508)。
关键词 井下轨道区域 语义分割 短期密集连接网络 特征注意力 特征融合 注意力机制 underground track area semantic segmentation network with short-term dense concatenate feature attention feature fusion feature fusion
  • 相关文献

参考文献10

二级参考文献139

共引文献879

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部