摘要
针对现有的金属氧化物避雷器(Metal Oxide Arrester,MOA)红外图像故障检测方法存在识别精度低、检测速度较慢的问题,提出一种基于改进YOLOv3的MOA红外图像故障检测方法。首先,以Darknet19网络代替YOLOv3原始的Darknet53网络,并在特征学习时针对样本中不同MOA长宽比例,通过K-means聚类算法对MOA图像中的目标帧进行分析,重新聚类样本中心锚点框,得到合适的锚框数目和大小。最后,利用改进YOLOv3模型完成MOA红外图像故障检测。实验结果表明,改进的YOLOv3模型识别精度达到96.3%,识别速度为6.75 ms。
Aiming at the problems of low recognition accuracy and slow detection speed of existing metal oxide arrester(MOA)infrared image fault detection methods,a MOA infrared image fault detection method based on improved YOLOv3 is proposed.Firstly,darknet19 network is used to replace the original darknet53 network of YOLOv3.During feature learning,the target frames in MOA images are analyzed by K-means clustering algorithm according to different MOA length width ratios in samples.The anchor frames in the center of samples are re clustered to get the appropriate number and size of anchor frames.Finally,the improved YOLOv3 model is used to complete the MOA infrared image fault detection.The experimental results show that the recognition accuracy of the improved model reaches 96.3%,and the recognition speed is 6.75ms.
作者
胡泰山
刘浩
刘刚
梅琪
马御棠
廖民传
HU Taishan;LIU Hao;LIU Gang;MEI Qi;MA Yutang;LIAO Minchuan(State Key Laboratory of HVDC,Electric Power Research Institute,CSG,Guangzhou 510663,China;Electric Power Research Institute of Yunnan Power Grid Co.,Ltd,Kunming 650000,China)
出处
《红外技术》
CSCD
北大核心
2023年第11期1256-1261,共6页
Infrared Technology
基金
南方电网公司科技项目(YNKJXM20191243)。