摘要
针对红外图像增强过程中容易饱和、细节丢失等问题,提出一种参数自设定的双直方图均衡化方法。根据灰度级累积概率密度黄金比例值将原始图像划分为两个独立的子图像。结合原始图像曝光度和子图像灰度级区间信息,对每个子图像的直方图进行多尺度自适应加权校正。基于校正后的直方图,对每个子图像分别作均衡化映射变换,最后合并子图像获得增强图像。在红外图像公开数据集INFRARED100上进行的测试显示,与亮度保持双直方图均衡化(Brightness Preserving Bi-Histogram Equalization,BBHE)、带平台限制的双直方图均衡化(Bi-histogram Equalization with a Plateau Limit,BHEPL)、基于曝光度的双直方图均衡化(Exposure based Sub-image Histogram Equalization,ESIHE)方法相比,所提方法增强的图像具有合适的平均对比度和更大的平均信息熵,在峰值信噪比(Peak Signal-to-Noise Ratio,PSNR)、结构相似度(Structural Similarity,SSIM)、绝对平均亮度偏差(Absolute Mean Brightness Error,AMBE)指标上平均提升至少17.2%、4.0%、56.2%。实验结果表明,所提方法对不同亮度特征的红外图像都有良好的适应性,可有效增强红外图像对象和背景之间的对比度,在噪声抑制、亮度和细节保持等方面优于同类方法。
We proposed a parameter self-tuning bi-histogram equalization method to solve saturation and detail loss in infrared image enhancement.We decomposed an input image into two independent sub-images according to the golden ratio of the gray cumulative probability density and modified each sub-image histogram through a multi-scale adaptive weighing process with input image exposure and sub-image gray-level interval information.Subsequently,we performed the equalization of the two corrected sub-histograms independently and combined the two equalized sub-images into a single output image.A test on 100 infrared images in a public dataset-INFRARED100 showed that,compared with brightness preserving bi-histogram equalization(BBHE),bi-histogram equalization with a plateau limit(BHEPL),and exposure-based sub-image histogram equalization(ESIHE),the images enhanced by the proposed method have appropriate contrast and greater average information entropy.We increased the peak signal-to-noise ratio(PSNR),structural similarity(SSIM)index,and absolute mean brightness error(AMBE)by at least 17.2%,4.0%,and 56.2%on average.The experiments illustrated that the proposed method is adaptable to infrared images with different brightness characteristics,effectively improving the contrast between the infrared image object and background.This method is superior to noise suppression,brightness,and detail preservation methods.
作者
张桓
陈志盛
ZHANG Huan;CHEN Zhisheng(School of Design Art,Changsha University of Science&Technology,Changsha 410114,China;School of Electrical and Information Engineering,Changsha University of Science&Technology,Changsha 410114,China)
出处
《红外技术》
CSCD
北大核心
2023年第11期1207-1215,共9页
Infrared Technology
基金
湖南省哲学社会科学基金(19YBA020)
长沙理工大学青年教师成长计划(2019QJCZ079)。
关键词
红外图像处理
对比度增强
直方图均衡化
亮度保持
自适应加权校正
infrared image processing
contrast enhancement
histogram equalization
brightness preserving
adaptive weighting corrected