期刊文献+

基于边缘感知深度残差网络的带钢表面缺陷检测

Boundary-Aware Deeply Residual Network for Salient Object Detection of Strip Steel Surface Defects
下载PDF
导出
摘要 基于深度学习的显著目标检测方法已被用于带钢表面缺陷检测中,但仍存在模型收敛速度慢、检测结果边缘不清晰等问题。针对现有问题,本文提出了基于边缘感知深度残差网络(boundary-aware deeply residual network, BADRNet),以此进行带钢表面缺陷的显著目标检测。将边缘信息引入至缺陷检测任务中,解决了因目标尺寸多样性带来的检测结果边缘不清晰的问题;通过在边缘提取、显著特征融合部分采用具有残差结构的3个卷积层作为基本块,提高了训练效率且保持原有的检测精度不变。在公开的SD-saliency-900数据集上的实验结果表明,所提模型相比于现有模型,在6个评价指标上均取得了最优效果。BADRNet比当前最优的EDRNet在S-measure指标上提升了1.6%,同时对于缺陷区域边缘的检测效果具有明显提升。 Deep learning-based salient object detection has been used in strip steel surface defects,but there are still some problems such as slow model training speed and unclear boundary of detection results.To address these issues,we proposed a boundary-aware deeply residual network(BADRNet)for salient object detection of strip steel surface defects.Boundary features are introduced into the steel surface defects to solve the problem of unclear boundary of detection results caused by varying object sizes.Three convolution layers with residual structure are used as basic blocks for boundary extraction and salient feature aggregation,improving training efficiency while maintaining original detection accuracy.Experimental results on the public strip steel benchmark dataset,SD-saliency-900,show that our model outperforms existing models in all six evaluation indicators.The proposed BADRNet improves the S-measure performance by 1.6%,and significantly enhances the detection effect on the defect area.
作者 沈坤烨 周晓飞 费晓波 陈雨中 张继勇 颜成钢 SHEN Kunye;ZHOU Xiaofei;FEI Xiaobo;CHEN Yuzhong;ZHANG Jiyong;YAN Chenggang(School of Automation,Hangzhou Dianzi University,Hangzhou 310018,Zhejiang,China)
出处 《应用科学学报》 CAS CSCD 北大核心 2023年第6期978-988,共11页 Journal of Applied Sciences
基金 国家自然科学基金(No.62271180) 国家重点研发项目(No.2020YFB1406604) 浙江省自然科学基金(No.LY19F030022) 杭电-中电大数据技术工程研究中心基金(No.KYH063120009)资助。
关键词 显著性检测 缺陷检测 深度学习 残差结构 边缘特征 salient object detection defect detection deep learning residual structure boundary feature
  • 相关文献

参考文献1

二级参考文献16

  • 1GOPALAKRISHNAN V, HU Y, RAJAN D. Salient region detection by modeling distributions of color and orientation[J]. IEEE Transactions on Multimedia, 2009, 11(5): 892-905. 被引量:1
  • 2BUSCHMAN T J, MILLER E K. Top-down versus bottom-up control of attention in the prefrontal and posterior parietal cortices[J]. Science, 2007, 315(5820): 1860-1862. 被引量:1
  • 3ITTI L, KOCH C, NIEBUR E. A model of saliency-based visual attention for rapid scene analysis[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1998, 20(11): 1254-1259. 被引量:1
  • 4ITTI L, KOCH C. A saliency-based search mechanism for overt and covert shifts of visual attention[J]. Vision Research, 2000, 40(10): 1489-1506. 被引量:1
  • 5ITTI L, KOCH C, NIEBUR E. Computation modeling of visual attention[J]. Nature Reviews. Neuroscience, 2001, 2(11): 194-203. 被引量:1
  • 6WALTHER D, ITTI L, RIESENHUBER M, POGGIO T, KOCH C. Attentional selection for object recognition - a gentle way[J]. Lecture Notes in Computer Science, 2002, 2525(1): 472-479. 被引量:1
  • 7WALTHER D, ITTI L, KOCH C. Saliency Toolbox. http://www.saliencytoolbox.net, 2008.11. 被引量:1
  • 8WEIJER J, GEVERS T, BAGDANOV A D. Boosting color saliency in image feature detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2006, 28(1): 150-156. 被引量:1
  • 9LI Qian, WANG Shuozhong, ZHANG Xinpeng. Hierarchical identification of visually salient image regions[C]// Audio Language and Image Processing, ICALIP 2008 International Conference, Shanghai, China, July 7-9, 2008: 1708-1712. 被引量:1
  • 10Hou Xiaodi, ZHANG Liqing. Saliency detection: a spectral residual approach[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Minneapolis, Minnesota, USA, 2007: 1-8. 被引量:1

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部