期刊文献+

融合空间信息和分布关系的东巴画小样本分类

Dongba Painting Few-Shot Classification Combining Spatial Information and Distribution Relationship
下载PDF
导出
摘要 纳西族东巴画具有纹理复杂、色彩鲜明的艺术特点,是民族文化的重要组成部分.针对东巴画数量稀少且主题多样、细节丰富,现有的深度学习方法直接应用于东巴画分类任务时易导致模型分类准确率低、泛化性差等问题,提出一种融合空间信息和分布关系的东巴画小样本分类方法.首先采用一对独立的编码操作将空间信息聚合到通道注意力,获取具有方向感知和位置敏感的注意力特征图,准确定位东巴画目标区域;然后将特征图输入自适应元权重生成器,加强支持集与查询集样本之间的信息关联,增强特征的表达能力;最后构建双向图神经网络,显式地利用样本实例信息和分布关系,通过优化重构样本图特征进行分类预测.在3个自建的东巴画数据集上进行模型训练的实验结果表明,与其他小样本算法相比,所提方法的分类准确率分别提升9.79,5.76和8.21个百分点,可以更有效地提取东巴画分类所需的图像全局信息和细节特征,并能扩展至其他少数民族文化的保护与传承等领域. As an important part of national culture,Naxi Dongba painting has the artistic characteristics of rich texture and bright colors.However,due to the scarcity and complexity of Dongba painting,the existing deep learning methods perform poorly on the classification task.To improve this situation,we propose a few-shot classification method that combines spatial information and distribution relationship.Firstly,a pair of inde-pendent encoding operations are used to aggregate the spatial information into the channel attention,and the attention feature maps with orientation-aware and position-sensitive are obtained to accurately locate key re-gions.Secondly,feed the feature maps into the adaptive meta-weight generator to enhance the expressive abil-ity of the features.Finally,a dual complete graph neural network is constructed to explicitly use the sample in-stance information and distribution relationship to perform classification prediction.Model training on 3 self-built Dongba painting datasets.Compared with other few-shot methods,the classification accuracy of the proposed method is improved by 9.79,5.76 and 8.21 percentage points,respectively.The experimental re-sults show that the method can more effectively exact the global information and detailed features of samples required for the classification of Dongba painting,and it can be effectively applied to the protection and in-heritance of minority cultures.
作者 徐启豪 钱文华 Xu Qihao;Qian Wenhua(Department of Computer Science and Engineering,School of Information Science and Engineering,Yunnan University,Kunming 650504)
出处 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2023年第9期1417-1428,共12页 Journal of Computer-Aided Design & Computer Graphics
基金 国家自然科学基金(62162065) 云南省科技厅基金(202105AF150011,202001BB050043) 云南大学专业学位研究生实践创新项目(2021Y171).
关键词 小样本分类 东巴画 空间信息 分布关系 图神经网络 few-shot classification Dongba painting spatial information distribution relationship graph neural network
  • 相关文献

参考文献5

二级参考文献31

共引文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部