摘要
以分析纯试剂为原料模拟含锌冶炼渣,采用熔融法制备微晶玻璃,利用X射线衍射、扫描电子显微镜、拉曼光谱等表征方法,探究不同氧化锌掺杂量对微晶玻璃形成、晶化及理化性能的影响。结果表明,微晶玻璃的主要结晶相为堇青石相,少量氧化锌(低于0.5%,摩尔分数,下同)的加入能够增强玻璃形成能力。随着氧化锌含量逐渐增加(0.5%~20.0%),玻璃网络结构的完整性变差,玻璃的黏度降低,微晶玻璃的主要结晶相由堇青石转变为尖晶石,同时结晶度和晶粒尺寸增大,从而微晶玻璃的体积密度、硬度和耐酸碱性提高。微晶玻璃对重金属锌有较好的固化效果,因此锌浸出浓度远低于标准值,浸出率趋于稳定。本研究可为实现微晶玻璃固化重金属提供参考和借鉴。
Using analytical pure reagents as raw materials to simulate zinc-containing smelting slag,glass-ceramics were prepared by melting method.X-ray diffraction,scanning electron microscopy,and Raman spectroscopy were used as characterization methods,and the effect of different zinc oxide content on the formation,crystallization,physical and chemical properties of glass-ceramics was explored.The results show that the main crystalline phase of glass-ceramics is cordierite,and the addition of a small amount of zinc oxide(less than 0.5%,mole fraction,same as below)can enhance the glass-forming ability.As the zinc oxide content gradually increases(0.5%~20.0%),the integrity of glass network structure deteriorates,and the viscosity of glass decreases.The main phase of glass-ceramics is transformed from cordierite to spinel,and the crystallinity and grain size of glass-ceramics increase.Consequently,the bulk density,hardness and resistance to acid/alkali corrosion of glass-ceramics also increase.Heavy metal zinc has good curability in glass-ceramics,so the leaching concentration of zinc is much lower than the standard value,and leaching rate tends to be stable.This study provides a reference for the solidification of heavy metals through glass-ceramics.
作者
李念哲
张宇轩
崔秀涛
欧阳顺利
LI Nianzhe;ZHANG Yuxuan;CUI Xiutao;OUYANG Shunli(School of Materials and Metallurgy,Inner Mongolia University of Science and Technology,Baotou 014010,China;Guangzhou Maritime University,Guangzhou 510725,China)
出处
《硅酸盐通报》
CAS
北大核心
2023年第11期4136-4145,共10页
Bulletin of the Chinese Ceramic Society
基金
国家自然科学基金(11964025,11564031)
内蒙古自治区重大基础研究开放课题(0406091701)
内蒙古科技大学创新基金(2019YQL06)。
关键词
微晶玻璃
氧化锌
重金属锌
显微结构
固化机制
尖晶石
glass-ceramics
zinc oxide
heavy metal zinc
microstructure
solidification mechanism
spinel