期刊文献+

基于GEP的装配作业车间调度复合派工法则研究 被引量:3

Research on Composite Dispatching Rules of Assembly Job Shop Scheduling Based on Gene Expression Programming
原文传递
导出
摘要 派工法则是求解作业车间调度问题的一种简单有效的方法。针对一种装配作业车间调度问题建立仿真模型,并通过基因表达式编程(Gene expression programming,GEP)算法自动产生并搜索最优的派工法则。仿真模型结果表明,在最小平均流程时间和最小平均绝对偏差两个目标函数下,GEP算法都能够找到比现有常用的派工法则更好的解,在计算时间和求解质量方面也都具有优势,并且有较强的鲁棒性。具体设计上,构造属性筛选机制以减少搜索空间,提升搜索性能,采用动态自适应算法提高GEP的搜索效果,通过仿真试验构建不同的生产环境证明了所提算法的有效性。 Dispatching rules is a simple and effective approach for job shop scheduling problems.Aiming at an assembly job shop scheduling problem(AJSP),a simulation model is established and a gene expression programming(GEP)algorithm is proposed to automatically generate and search optimal dispatching rules.Simulation results show that under the two optimization objectives of minimizing mean flow time and mean absolute deviation,the GEP algorithm can find better solutions than existing commonly used dispatching rules and shows advantages in computation time and solving quality,together with a certain level of robustness.Specifically,a feature selection scheme is designed to reduce the search space and improve search performance.A dynamic self-adaptive scheme is also applied to improve the search ability of GEP,and the effectiveness of the proposed algorithm is proved by simulating experiments constructed for different production environments.
作者 吕海利 黄志文 陈建华 王正国 吴姝 韩国震 LÜHaili;HUANG Zhiwen;CHEN Jianhua;WANG Zhengguo;WU Shu;HAN Guozhen(School of Transportation and Logistics Engineering,Wuhan University of Technology,Wuhan 430063;Institute of Logistics System Science and Engineering,Wuhan University of Technology,Wuhan 430063;Ministry of Education Engineering Research Center for Port Logistics Technology and Equipment,Wuhan 430063;Wuhan Tianma Microelectronics Co.,Ltd.,Wuhan 430000)
出处 《机械工程学报》 EI CAS CSCD 北大核心 2023年第16期427-434,共8页 Journal of Mechanical Engineering
基金 国家自然科学基金青年科学基金(11701437) 军工项目JGXM(202018HX02) 桂林航天工业学院广西航空物流研究中心基金(19KFJJHKWL04)资助项目。
关键词 基因表达式编程 装配作业车间调度 派工法则 属性选择 gene expression programming assembly job shop scheduling dispatching rules feature selection
  • 相关文献

参考文献5

二级参考文献20

  • 1苏子林.求解作业车间调度问题的多种群杂交遗传算法[J].机械设计与制造,2006(7):23-25. 被引量:2
  • 2E. L. Carey, D. S. Johnson, R. Sethi. The com plexity of flowshop and job-- shop scheduling[J]. Mathe- matics of Operations Research, 1976, 1(2):117-129. 被引量:1
  • 3C. Ferreira. Gene Expression Prograraming: A New Adaptive Algorithm for Solving Problems[J]. Complex Systems, 2001, 13(2):87-129. 被引量:1
  • 4H. S. Lopes, W. R. Weinert. EGIPSYS: An Enhanced Gene Expression Programming Approach for Symbolic Regression Problems [J]. International Journal of Applied Mathematics and Computer Science, 2004, 14 (3): 375-384. 被引量:1
  • 5C. Zhou, et al. Evolving Accurate and Compact Classification Rules With Gene Expression Programming [J]. IEEE Transactions on Evolutionary Computation, 2003, 7(6):519-531. 被引量:1
  • 6V. K. Karakasis and A. Stafylopatis. Data Mining based on Gene Expression Programming and Clonal Selection [J]. In Proceedings of the IEEE World Congress on Evolutionary Computation, CEC 2006, 2006:514-521. 被引量:1
  • 7X. S. Yan, W. Wei, Q.Z. Liang, et al. Designing electronic circuits by means of gene expression programming Ⅱ [J]. Evolvable Systems: From Biology to Hardware, Springer press, 2007, 4684:319-330. 被引量:1
  • 8M. Gen, R. Cheng. Genetic Algorithms and En- gineering Design [M]. New York.. John Wiley & Sons, 1997. 被引量:1
  • 9LEE C, CHENG T, LIN B. Minimizing the makespan in the 3 machine assembly type flow shop scheduling problem [J]. Management Science, 1993, 39(5):615-625. 被引量:1
  • 10PONGCHAROEN P, HICKS C, BRAINDEN P. Determining optimum genetic algorithm parameters for scheduling the manufacturing and assembly of complex products[J]. International Journal of Production Economics, 2002, 78(3):311-322. 被引量:1

共引文献38

同被引文献24

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部