摘要
基于电磁热流体与凝固传输理论建立了无间隙原子(IF)钢板坯连铸的三维耦合数值模型,研究了不同拉速下行波磁场旋转搅拌(EMRS)对2 150 mm×230 mm断面板坯结晶器内电磁场、流场、传热与凝固等冶金行为的影响,提出了行波磁场旋转搅拌对结晶器冶金性能影响的多参量评价方法。结果表明,EMRS作用下搅拌器中心横截面上磁感应强度和电磁力的最小值都出现在铸坯中心且电磁力矢量出现了6个涡心。当拉速从0.84 m/min提高到1.84 m/min时,结晶器内液面速度增大,在搅拌器中心横截面位置处,电磁力的涡数量由6个减少至4个。随着拉速增大,宽面凝固前沿最大冲刷速度、窄面附近最大液面波高及钢液冲击深度均增大,而窄面凝固前沿最大冲刷速度和结晶器出口坯壳厚度随拉速增大而减小。
A three-dimensional coupled numerical model of interstitial-free(IF)slab continuous casting was estab-lished based on the theory of electromagnetic thermal fluids and solidification transfer.The effects of rotating elec-tromagnetic stirring(EMRS)with various casting speeds on the comprehensive metallurgical behaviors of electro-magnetic field,flow field,heat transfer and solidification in 2150 mmX 230 mm slab mold were investigated.The results show that the minimum values of magnetic induction intensity and electromagnetic force on the central cross section of the stirrer under the action of EMRS appear in the center of the slab and the electromagnetic force vector has six vortex centers.The liquid level velocity in the mold increases as the pulling speed increases from O.84 m/min to 1.84 m/min,and the number of vortex of electromagnetic force decreases from 6 to 4 at the stirrer's central cross-sectional position.With increasing pulling speed,the maximum impact velocity of the wide solidification front,the maximum liquid surface wave height near the narrow surface,and the impact depth of the liquid steel all increase.While the maximum impact velocity of the narrow solidification front and the thickness of the slab shell at the mold outlet decrease with the increase of pulling speed.
作者
杨宏
宋异
肖艳
夏松青
肖晓丹
肖红
YANG Hong;SONG Yi;XIAO Yan;XIA Songqing;XIAO Xiaodan;XIAO Hong(Electromagnetic Center,Hunan Zhongke Electric Co.,Ltd.,Yueyang 414000,Hunan,China;Technical Department,Hunan Guangyuan Electric Power Technology Co.,Ltd.Yueyang 414000,Hunan,China)
出处
《连铸》
2023年第5期71-79,共9页
Continuous Casting
基金
湖南省科技人才托举工程资助项目(2023TJ-Z14)。
关键词
板坯连铸
行波磁场
旋转搅拌
综合冶金行为
拉速
slab continuous casting
traveling wave magnetic field
EMRS
metallurgical behavior
pulling speed