摘要
提出一种飞轮型耦合振膜光纤法布里-珀罗(F-P)声矢量传感器。该传感器通过两个飞轮结构振膜的相邻辐条自然耦合,形成面内膜间桥耦合结构。仿真结果表明,基于振膜耦合增益原理的飞轮型光纤声矢量传感器振膜具有摇摆和弯曲两种振动模态,可实现数千赫兹宽频率范围的相位差放大,从而提高传感器定向精度。两个飞轮型振膜与光纤端面构成两个独立的F-P微腔传感单元,通过光学干涉信号强度提取得到振膜的振动信号。对所制备的传感器在5~7.4 kHz频率范围内进行二维平面声源定向实验,实验结果与仿真结果符合良好,该传感器在5~7.4 kHz的宽频率范围内具有相位差放大效果,在7.2 kHz处取得最大相位差增益5.05。
Objective Sound source localization(SSL)technology is vital in a wide range of applications such as smart robots,unmanned aerial vehicle(UAV)detection,and unmanned driving.Acoustic sensor arrays are the main solution to SSL.However,with the development of small devices,it is difficult for these arrays to simultaneously satisfy the requirements of miniaturization and high precision.Inspired by small animals'auditory organs,bio-mimetic acoustic vector sensors are an alternative to acoustic sensor arrays.The parasitic fly Ormia ochracea inspires mechanical coupling between two membranes with an interaural phase difference(IPD)gain.Bio-mimetic acoustic vector sensors based on mechanical coupling inherit the IPD gain function.The gain effect of the current bio-mimetic acoustic vector sensors is limited to around the eigenfrequency.Meanwhile,electrical sensors are highly susceptible to extreme environments such as strong electromagnetic and high temperatures,while fiber-optic sensors can endure these conditions.We propose a flywheel-like fiber-optic Fabry-Perot(F-P)acoustic vector sensor for wide-range IPD gain based on the diaphragm coupling gain principle.We hope that the diaphragm-coupling fiber-optic F-P acoustic vector sensor can achieve the IPD gain of several kilohertz frequency ranges,adapting to ambiguous sound source direction in extreme environments.Methods The flywheel-coupling diaphragm is simplified to a two-degree-of-freedom(2-DOF)mass-spring-dashpot system with two shape modes of rocking mode and bending mode.COMSOL Multiphysics is employed to analyze diaphragm vibration characteristics and the structure parameters of the diaphragm are optimized based on the simulation results.The flywheel-coupling structure on stainless steel sheet is produced by ultraviolet laser etching technology.The adjoint spokes of two flywheel vibration units naturally couple to form a simplified intermembrane bridge coupling structure.The vibration units combined with individual fiber form independent fiber-optic F-P sensing un
作者
李雪萍
王双
张鹏
江俊峰
杨濠琨
刘铁根
Li Xueping;Wang Shuang;Zhang Peng;Jiang Junfeng;Yang Haokun;Liu Tiegen(School of Precision Instrument and Opto-Electronics Engineering,Tianjin University,Tianjin 300072,China;Key Laboratory of the Ministry of Education on Optoelectronic Information Technology,Tianjin University,Tianjin 300072,China;Institute of Optical Fiber Sensing,Tianjin University,Tianjin 300072,China)
出处
《光学学报》
EI
CAS
CSCD
北大核心
2023年第20期47-55,共9页
Acta Optica Sinica
基金
国家自然科学基金(62075160)
天津大学自主创新基金(2022XJS-0090)。
关键词
光纤光学
F-P传感器
声矢量
摇摆模态
耳间相位差
fiber optics
Fabry-Perot sensor
acoustic vector
rocking mode
interaural phase difference