期刊文献+

具有恶化效应和共同工期窗口的极小化极大值单机排序问题

Minmax Scheduling with Deterioration Effects and Common Due-window on a Single Machine
原文传递
导出
摘要 本文讨论具有共同工期窗口的极小化极大值的单机排序问题,其中假设工件的加工时间与其开工时间成比例,即成比例恶化。费用函数由工件的提前惩罚、延误惩罚,工期窗口的开始时间和工期窗口的大小组成。目标是确定工件的开始加工时间、工件的一个最优排序、工期窗口的开始时间及工期窗口的规模大小,使得工件加工的最大费用函数达到最小。本文证明该问题是多项式时间可解的,并给出了具体求解解法。 Scheduling problems with deterioration effects(time-dependent processing times)have received increasing attention nowadays.In a real production environment,the processing time of each job often depends on its starting time,for example,a processing machine or a tool loses its qualities,i.e.,the later of a job starts,the longer it takes to process it,which is deterioration effect.In this paper,on one hand,the single machine scheduling problem is studied with a time-dependent deterioration model:the processing time of a job is proportional to its starting time,i.e.,pj=aj(A+Bsj),wherepj,sj,aj represent respectively,the actual processing time,starting time and deteriorating rate of the job Jj,while A and B are given positive constants.On the other hand,under the Just-In-Time(JIT)system,jobs are required to be completed as close as possible to their assigned due-windows,otherwise,earliness or tardiness penalty would be incurred.Under common due-window put forward in this paper,the cost function is composed of earliness penalty,tardiness penalty,due-window starting time and size.The goal is to determine the starting time of the first job,schedule of jobs,due-window starting time and size so that the maximum cost function is minimized.It is showed that this minmax problem can be modeled by a linear programming.Some properties of the optimal solution are analyzed,which proved that the problem can be solved in polynomial time O(n),where n is the number of jobs.Furthermore,a numerical example is given and the optimal solutions under different conditions are analyzed.Single machine minmax scheduling problem with deterioration effect and common due-window can impact the order in which the jobs are processed and thus affect production decisions.Therefore,it needs to take deterioration effect and due-window into consideration when making production decisions,and how to enhance production efficiency.
作者 薛静 王吉波 XUE Jing;WANG Ji-bo(School of Science,Shenyang Aerospace University,Shenyang 110136,China)
出处 《中国管理科学》 CSCD 北大核心 2023年第10期187-192,共6页 Chinese Journal of Management Science
基金 辽宁省“兴辽英才计划”资助项目(XLYC2002017)。
关键词 排序 极小化极大值 工期窗口安排 恶化效应 scheduling minmax due-window assignment deterioration effect
  • 相关文献

参考文献4

二级参考文献20

  • 1赵传立,张庆灵,唐恒永.具有线性恶化加工时间的调度问题(英文)[J].自动化学报,2003,29(4):531-535. 被引量:17
  • 2Alidaee B, Womer N K. Scheduling with time dependent processing times : review and extensions [ J ]. Journal of theOperational Research Society, 1999,7(50) : 711-720. 被引量:1
  • 3Gawiejnowicz S. Time-dependent scheduling[ M]. Berlin : Springer, 2008. 被引量:1
  • 4Gupta J N D, Gupta S K. Single facility scheduling with nonlinear processing times[ J]. Computers and Industrial Engineer-ing, 1988,14(4) : 387-393. 被引量:1
  • 5Browne S, Yechiali U. Scheduling deteriorating jobs on a single processing[J]. Operations Research, 1990, 38(3) : 495-498. 被引量:1
  • 6MosKeiov G. Scheduling jobs under simple linear deterioration[ J]. Computers and Operations Research, 1994, 21(6) : 653-659. 被引量:1
  • 7Gordon V S, Potts C N, Strusevich V A, Whitehead J D. Single machine scheduling models with deterioration and learning:handling precedence constraints via priority generation[ J]. Journal of Scheduling, 2008 , 11(5) : 357-370. 被引量:1
  • 8Mosheiov G. A note on scheduling deteriorating jobs[ J]. Mathematical and Computer Modelling, 2005,41(8-9) : 883-886. 被引量:1
  • 9Cheng T C E,Ding Q,Lin B M T. A concise survey of scheduling with time - dependent processing times[ J]. EuropeanJournal of Operational Research, 2004,152 ( 1) : 1-13. 被引量:1
  • 10Cheng T C E. Optimal common due-date with limited completion time deviation [ J]. Computers and Operations Research,1988,15(2) : 91-96. 被引量:1

共引文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部