摘要
针对地表水提取过程中部分细小河流和半干涸河道提取较困难的问题,以1986—2020年的山东省内陆地表水为研究对象,基于改进的归一化水体指数(MNDWI)模型,引入建筑物指数模型和植被指数模型,提出了一种新型水体指数(GMNDWI),较明显地提高了地表水体的提取精度。在此基础上,运用空间网格化处理与分区统计、动态度等方法分析了山东省内陆地表水的时空变化特征,并通过相关性分析对选取的影响因子进行了讨论。结果表明:研究区内地表水时空分布不均衡,旱雨季水面积之比稳定在3∶5,均呈现先增加后减少的变化趋势;降雨量和耕地面积与地表水面积的相关系数明显高于其他因素,表明二者的共同作用是导致研究区地表水面积变化的关键因素。
In order to solve the difficulty of extracting some small rivers and semi-dry channels in the process of surface water extraction,the inland surface water of Shandong Province from 1986 to 2020 was taken as the research object and a new water index(GMNDWI)based on the MNDWI water index model was proposed by introducing the building index model and the vegetation index model,which significantly improved the extraction accuracy of surface water.On this basis,the spatio-temporal variation characteristics of inland surface water in Shandong Province were analyzed using spatial grid processing,zonal statistics and dynamic attitude methods,and the selected influencing factors were discussed by correlation analysis.The results show that the spatial and temporal distribution of surface water in the study area is uneven,and the ratio of water area in the dry and rainy seasons is stable at 3∶5,showing a trend of increasing first and then decreasing.The correlation coefficients of rainfall and cultivated land area with surface water area are significantly higher than other factors,indicating that the combined action of rainfall and cultivated land area is the key factor leading to the change of surface water area in the study area.
作者
李艺
范俊甫
张志锟
左吉伟
时宗闻
高宇
LI Yi;FAN Junfu;ZHANG Zhikun;ZUO Jiwei;SHI Zongwen;GAO Yu(School of Architectural Engineering and Spatial Information,Shandong University of Technology,Zibo 255049,China)
出处
《山东理工大学学报(自然科学版)》
CAS
2024年第1期1-7,共7页
Journal of Shandong University of Technology:Natural Science Edition
基金
国家自然科学基金项目(42171413)
山东省自然科学基金项目(ZR2020MD015)
山东理工大学青年教师发展支持计划项目(4072-115016)。
关键词
LANDSAT
遥感
地表水提取
水体指数
精度分析
相关性分析
Landsat
remote sensing
surface water extraction
water index
precision analysis
correlation analysis