摘要
In this paper,the fault-tolerant capability of the existing stator-flux-oriented decoupling control(SFOC)for the DTP-PM motor is investigated,and a simple fault-tolerant SFOC is further designed to enhance fault tolerance.Firstly,the mathematical model of the DTP-PM motor in the stator-flux-oriented rotating coordinate system is analyzed.An SFOC is proposed to guarantee healthy operation performance,considering torque,flux linkage,and harmonic currents.Secondly,the coupling relationship under open-phase conditions is assessed.The assessed result shows that the coupling relationship between the harmonic and fundamental components results in conflicts and poor post-fault operation.Thirdly,the proposed SFOC includes an automatic deactivation module to detect conflicts with a variable threshold.The conflicted harmonic current controllers can be excluded automatically.Hence,fault-tolerant control can be remedied without diagnosing the specific fault scenario,and excellent faulttolerant capability can be achieved.Finally,experiments on a DTP-PM motor are carried out to verify the feasibility and effectiveness of the proposed strategy.
基金
supported by the National Natural Science Foundation of China(Grant Nos.52025073 and 52107047)
the Priority Academic Program Development of Jiangsu Higher Education Institutions。