期刊文献+

基于改进S-G滤波和非监督分类局部核回归的中国LAI时序数据融合研究 被引量:1

LAI Time Series Data Fusion in China Based on Improved S-G Filtering and Unsupervised Classification Local Kernel Regression
原文传递
导出
摘要 叶面积指数Leaf Area Index(LAI)是表征植被冠层结构的重要参数,其遥感产品常常因云、气溶胶、积雪、算法和仪器问题等因素影响,导致数据质量差或缺失,严重影响LAI数据集的应用。本文提出了一种基于改进S-G滤波和非监督分类局部核回归的LAI时序数据融合方法,并利用2014—2020年MODIS LAI、PROBA-V LAI、VIIRS LAI产品数据,开展归一化融合研究,以提高产品的一致性、连续性和精确性。结果表明,融合LAI与源产品及其他LAI产品(MCD15A2H、MOD15A2H、VNP15A2H、PROBA-V)的LAI值频率分布、时序变化表现出良好的一致性,并有较好的相关性,R2分别为0.85、0.77、0.84和0.89,与这4个产品相比,数据缺失频率总体下降,时间连续性有所提高,相较于MCD15A2H LAI(19.59%)、MOD15A2H LAI(25.54%)、VNP15A2H LAI(23.33%)和PROBA-V LAI(9.64%),融合LAI平均缺失频率降低为5.04%。与其他产品比较,融合LAI与地面实测值的相关性最好,决定系数(R2)达0.76,比其他产品高0.03~0.2,均方根误差(RMSE)为1.16 m^(2)/m^(2),比其他产品低(0.1~0.66)m^(2)/m^(2),具有较高的精度。 Leaf Area Index(LAI)is an important parameter for characterizing the canopy structure of vegetation.Remote sensing products of LAI are often affected by factors such as clouds,aerosols,snow,algorithms,and instrument issues,which result in poor data quality or missing data,seriously affecting the application of LAI datasets.In this paper,we propose a LAI time-series data fusion method based on improved S-G filtering and unsupervised classification local kernel regression.The normalized fusion is carried out using MODIS LAI,PROBA-V LAI,and VIIRS LAI products from 2014 to 2020 to improve the consistency,continuity,and accuracy of the products.Results show that the fused LAI shows good consistency in frequency distribution and temporal variation with the source products and other LAI products(MCD15A2H,MOD15A2H,VNP15A2H,PROBA-V),with a R2of 0.85,0.77,0.84,and 0.89,respectively.Compared to other four products,the frequency of data missing is generally reduced,and the temporal continuity is improved.The averaged missing frequency of the fused LAI is reduced to 5.04%,compared to MCD15A2H LAI(19.59%),MOD15A2H LAI(25.54%),VNP15A2H LAI(23.33%),and PROBA-V LAI(9.64%).Also,the fused LAI shows the strongest correlation with ground measurements,with a R2of 0.76,which is 0.03~0.20 higher than other products,and a root mean square error(RMSE)of 1.16 m^(2)/m^(2),which is lower than other products(0.10~0.66)m^(2)/m^(2),indicating a higher accuracy.
作者 谢昭颖 沈润平 黄安奇 邢雅洁 王云宇 刘晓利 XIE Zhaoying;SHEN Runping;HUANG Anqi;XING Yajie;WANG Yunyu;LIU Xiaoli(School of Geographical Sciences,Nanjing University of Information Science&Technology,Nanjing 210044,China;Institute of Soil Science,Chinese Academy of Sciences,Nanjing 210018,China)
出处 《地球信息科学学报》 EI CSCD 北大核心 2023年第11期2249-2267,共19页 Journal of Geo-information Science
基金 国家重点研发计划项目(2018YFC1506602) 国家自然科学基金重点项目(91437220)。
关键词 叶面积指数(LAI) MODIS PROBA-V VIIRS 归一化 数据融合 局部核回归模型 Leaf Area Index(LAI) MODIS PROBA-V VIIRS normalization data fusion Local Kernel Regression Method
  • 相关文献

参考文献10

二级参考文献247

共引文献371

同被引文献14

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部