摘要
滑溜水压裂液是页岩气等非常规油气藏开采的重要材料,为明确高矿化度下聚合物滑溜水压裂液流变性与减阻性能关系,研究了超支化聚合物在不同浓度和不同矿化度下的流变性能,同时在大型摩擦阻力测试装置中测试其压差数据和摩擦阻力性能,在20万矿化度下减阻率可以达到70%左右。分析了聚合物的浓度、高矿化度对超支化聚合物流变性与减阻率的影响。并将计算得到的超支化聚合物在管路中流动的摩擦阻力系数(f)、广义雷诺数(Re)与聚合物溶液流变学参数(n)相关联,建立了表征高矿化度条件下超支化聚合物溶液摩擦阻力系数新方程,并获得了高矿化度下滑溜水摩阻系数与Re的幂律关系式。
Slickwater fracturing fluid is an important material for the exploitation of unconventional oil and gas reservoirs such as shale gas.In order to clarify the relationship between the rheology and drag reduction performance of polymer slickwater fracturing fluid under high salinity,the rheological characteristics of hyperbranched polymers at various concentrations and salinity,while their differential pressure data were studied in a large frictional resistance test apparatus,the drag reduction rate can reach about 70%at 2×105 salinity.The effects of polymer concentration and high salinity on the rheology and drag reduction rate of hyperbranched polymers were analyzed.Based on the frictional resistance coefficient(f),generalized Reynolds number(Re)for the flow of hyperbranched polymer solution in the pipeline and polymer solution rheological parameter(n),a new equation to characterize the frictional resistance coefficient of hyperbranched polymer solution under high mineralization conditions was established.The power law relationship between friction coefficient of the slickwater with high salinity and Re was obtained.
作者
俞路遥
田珍瑞
方波
卢拥军
许可
邱晓惠
李柯晶
YU Lu-yao;TIAN Zhen-rui;FANG Bo;LU Yong-jun;XU Ke;QIU Xiao-hui;LI Ke-jing(Shanghai Key Laboratory of Multiphase Materials Chemical Engineering,Lab of Chemical Engineering Rheology,East China University of Science and Technology,Shanghai 200237,China;China Petroleum Exploration and Development Research Institute,Beijing 100083,China)
出处
《应用化工》
CAS
CSCD
北大核心
2023年第10期2745-2750,2755,共7页
Applied Chemical Industry
基金
国家科技重大专项课题(2017ZX05023003)
国家自然科学基金(51834010)
中石油科技管理部项目(2020B-4120)。
关键词
超支化聚合物
流变性
高矿化度
滑溜水压裂液
减阻性能
摩擦阻力系数方程
hyperbranched polymers
rheology
high salinity
slickwater fracturing fluid
drag reduction performance
frictional resistance coefficient equation