期刊文献+

基于改进粒子群算法的永磁同步电机参数辨识

Parameters Identification of PMSM Based on Improved Particle Swarm Optimization
下载PDF
导出
摘要 针对一般粒子群算法辨识永磁同步电机参数由于其粒子在迭代后期易陷入局部最优而导致收敛速度慢和辨识精度差的缺陷,提出了一种基于混沌映射和高斯扰动改进的粒子群算法实现对永磁同步电机参数高精度辨识。利用混沌Sine映射构造了一种非线性随机递减惯性权重,并在粒子群的“个体认知”部分引入高斯扰动策略。采用Sine函数构造学习因子。改进算法仅需采集电机定子电流、电压以及转速信号便可实现永磁同步电机多参数的准确辨识。对比仿真结果表明:基于混沌映射和高斯扰动改进的粒子群算法具有更快的收敛速度和更高的辨识精度,对于永磁同步电机控制性能改善具有重要意义。 Aiming at the problem of slow convergence speed and poor identification accuracy caused by the general particle swarm optimization algorithm in parameter estimation of permanent magnet synchronous motor due to their particles falling into local optimization in the late iteration,a novel approach based on chaotic Sine mapping and Gaussian perturbation was introduced to achieve precise parameter recognition for permanent magnet synchronous motors.A nonlinear random decreasing inertia weight was constructed using chaotic Sine mapping,and a Gaussian perturbation strategy was introduced in the"individual cognition"part of the particle swarm.The Sine function was used to construct the learning factor.The improved algorithm only needed to collect the stator current,voltage and speed signals of the motor to achieve the accurate identification of multiple parameters of the permanent magnet synchronous motor.The comparative simulation results show that the improved particle swarm algorithm based on chaos mapping and Gaussian perturbation has faster convergence speed and higher recognition accuracy,which is of great significance for the improvement of permanent magnet synchronous motor control performance.
作者 高森 王康 姜宏昌 胡继胜 GAO Sen;WANG Kang;JIANG Hongchang;HU Jisheng(College of Automation and Electrical Engineering,Dalian Jiaotong University,Dalian 116028,China)
出处 《微特电机》 2023年第11期65-70,共6页 Small & Special Electrical Machines
关键词 永磁同步电机 参数辨识 改进粒子群算法 混沌映射 高斯扰动 permanent magnet synchronous motor(PMSM) parameter identification improved particle swarm optimization(PSO)algorithm chaotic mapping Gaussian perturbation
  • 相关文献

参考文献12

二级参考文献94

  • 1陈国初,俞金寿.增强型微粒群优化算法及其在软测量中的应用[J].控制与决策,2005,20(4):377-381. 被引量:31
  • 2贾东立,张家树,张超.基于混沌遗传算法的基元提取[J].西南交通大学学报,2005,40(4):496-500. 被引量:9
  • 3娄素华,吴耀武,熊信银.基于适应度空间距离评估选取的多目标粒子群算法在电网无功优化中的应用[J].电网技术,2007,31(19):41-46. 被引量:7
  • 4UNDERWOOD S J, HUSAIN I. Online parameter estimation and adaptive control of permanent magnet synchronous machines [ J ]. IEEE Transactions on Industrial Electronics, 2010, 57(7) : 2435 - 2443. 被引量:1
  • 5XIA Youshen, KAMELM S, LEUNG H. A fast algorithm for AR parameter estimation using a novel noise-eonstrained least squares method [ J ]. Neural Networks, 2010, 23 (3) :396 - 405. 被引量:1
  • 6UNDERWOOD S J, HUSAIN I. Online parameter estimation and adaptive control of permanent-magnet synchronous machines [ J ]. IEEE Transactions on Industrial Electronics, 2010, 57(7) : 2435 - 2443. 被引量:1
  • 7BOILEAUT,LEBOEUFN, NAHID-Mobarakeh B, et al. Online i- dentification of PMSM parameters: parameter identifiability and estimator comparative study [ J ]. IEEE Transactions on Industry applications ,2011,47 (4) : 1944 - 1957. 被引量:1
  • 8LI Liu, LIU Wenxin, DAVID A. Permanent magnet synchronous motor parameter identification using particle swarm optimization [ J ]. International Journal of Computational Intelligence Re- search,2008, 4(2) : 211 -218. 被引量:1
  • 9LI Liu, CARTES D A. Synchronisation based adaptive parameter identification for permanent magnet synchronous motors[ J ]. lET Control Theory & Applications, 2007, 1 (4) : 1015 -1022. 被引量:1
  • 10REZAIE J, GHOLAMI M, FIROUZI R, et al. Interior perma- nent magnet synchronous motor ( IPMSM ) adaptive genetic pa- rameter estimation [ C ]//Proceedings of the World Congress on Engineering and Computer Science,October 24 - 26, 2007, San Francisco, USA. 2007:926 -930. 被引量:1

共引文献137

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部