期刊文献+

Measurement of interacting quantum phases:A band mapping scheme

原文传递
导出
摘要 Band mapping is widely used in various scenarios of cold atom physics to measure the quasi-momentum distribution and band population.However,conventional methods fail in strongly interacting systems.Here we propose and experimentally realize a novel scheme of band mapping that can accurately measure the quasi-momentum of interacting manybody systems.Through an anisotropic control in turning down the threedimensional optical lattice,we can eliminate the effect of interactions on the band mapping process.Then,based on a precise measurement of the quasi-momentum distribution,we introduce the incoherent fraction as a physical quantity that can quantify the degree of incoherence of quantum many-body states.This method enables precise measurement of processes such as the superfluid to Mott insulator phase transition.Additionally,by analyzing the spatial correlation derived from the quasi-momentum of superfluid-Mott insulator phase transitions,we obtain results consistent with the incoherent fraction.Our scheme broadens the scope of band mapping and provides a method for studying quantum many-body problems.
出处 《Frontiers of physics》 SCIE CSCD 2023年第5期193-199,共7页 物理学前沿(英文版)
基金 supported by the National Key Research and Development Program of China(No.2021YFA1400900).
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部