期刊文献+

Alkaline hydrogen production promoted by small-molecule modification on flowerlike Co_(2)(OH)_(2)CO_(3)

下载PDF
导出
摘要 Developing a low-cost and high-efficiency nonprecious metal-based catalyst for hydrogen evolution reaction(HER) is of great significance for the utilization of hydrogen energy.In this work,we report a molecular-modification strategy to fabricate a self-supported hydrogen evolution electrode,specially by grafting the macrocyclic molecules(HHTP=2,3,6,7,10,11-hexahydroxytriphenylene) on the surface of a cobaltous dihydroxy carbonate(COC) seed layer.The HHTP-COC electrode is endowed with a rodlike structure,which provides favorable access for charge transportation and mass exchange.The macrocyclic molecule structure in HHTP can be grafted on COC and improve the electrical conductivity,while the interaction between HHTP and COC induces the rearrangement of charge configuration on the surface.Due to the combination effects of several aspects,the HHTP-COC electrode achieves astonishing HER activity,with a low overpotential of 61.0 mV(η_(10),at the current density of 10 mA cm^(-2)) and excellent stability in alkaline condition.This kind of interface engineering based on the organic molecules can be applied to the design and manufacture of electrocatalysts in the field of energy conversion and storage.
出处 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第9期73-80,共8页 能源化学(英文版)
基金 funded by grants from the National Natural Science Foundation of China (21771101, 52201258) the Natural Science Foundation of Jiangsu Province, China (BK20210651 and BK20210650) the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (21KJB430003)。
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部