期刊文献+

Cu在纳米结构PtNi上的表面可控锚定用于高效海水产氢

Surface controllable anchoring of Cu onto nanostructured PtNi for efficient electrochemical hydrogen evolution from seawater
原文传递
导出
摘要 表面组分调控及建立多功能活性位点是提高Pt基催化剂性能的有效途径.通过将Cu可控地锚定在纳米结构PtNi表面(Cu/PtNi)可以精确控制Pt基催化剂表面元素的化学计量比,其中亲氧的非贵金属Ni能加速水的解离,Pt由于具有适中的H吸附能,可有效地将游离态的H转换成氢气,Cu由于具有正的H吸附吉布斯自由能(ΔG_(H*)),有助于H_(2)的脱附.其中具有最优组分比例的Cu/PtNi电催化剂在海水中表现出优异的电化学析氢活性和稳定性,在碱性海水中,10 mA cm^(-2)下的过电位为23 mV(在70 mV过电位下,其质量活性是商用Pt/C的5倍).同时,密度泛函理论结果进一步验证了在碱性海水中Pt,Ni和Cu多功能金属活性位点可提高HER的H_(2)O解离、H*吸附和H_(2)脱附的过程. Composition adjustment and establishment of multifunctional sites are promising routes to enhance the performance of Pt nanoalloys.A new strategy,involving surface controllable anchoring of Cu on nanostructured PtNi(named as Cu/PtNi),has been developed to enable precise control of stoichiometric elements.The nanostructured material contains oxophilic Ni that promotes fast water dissociation,Pt for superior H adsorption and efficient H_(2) production,and Cu to give positive Gibbs free-energy of active hydrogen adsorption for H_(2) desorption.The new Cu/PtNi electrocatalyst displays superior activity in the electrocatalytic hydrogen evolution reaction,associated with an overpotential of 23 mV at 10 mA cm^(-2) in alkaline seawater that is five times higher than the mass activity of commercial Pt/C(at 70 mV overpotential).Results of density functional theory calculations verify that key processes including H_(2)O dissociation,H^(*)adsorption and H_(2) desorption involved in the hydrogen evolution reaction pathway in alkaline seawater are facilitated by Pt,Ni,and Cu multifunctional metal sites.
作者 杨雄 肖宇轩 陈江波 余菲 田歌 蒲福飞 章嵩 Susana I.Córdoba de Torresi Mark D.Symes Christoph Janiak 阳晓宇 Xiong Yang;Yu-Xuan Xiao;Jiang-Bo Chen;Fei Yu;Ge Tian;Fu-Fei Pu;Song Zhang;Susana I.Córdoba de Torresi;Mark D.Symes;Christoph Janiak;Xiao-Yu Yang(State Key Laboratory of Advanced Technology for Materials Synthesis and Processing&Shenzhen Research Institute&International School of Materials Science and Engineering and Processing,Wuhan University of Technology,Wuhan 430070,China;School of Chemical Engineering and Technology,Sun Yat-sen University,Zhuhai 519082,China;Instituto de Química,Universidade de Sao Paulo,Av.Prof.Lineu Prestes 748,05508-080 São Paulo,SP,Brazil;WestCHEM,School of Chemistry,University of Glasgow,Glasgow G128QQ,United Kingdom;Institut für Anorganische Chemie und Strukturchemie,Heinrich-Heine-Universitat Düsseldorf,Düsseldorf,40204,Germany)
出处 《Science China Materials》 SCIE EI CAS CSCD 2023年第10期3887-3894,共8页 中国科学(材料科学(英文版)
基金 supported by the National Key Research and Development Program of China(2022YFB3805600,2022YFB3805604,and 2022YFB3806800) the National Natural Science Foundation of China(22293020) the National 111 project(B20002) the Program Fund of Non-Metallic Excellence and Innovation Center for Building Materials(2023TDA1-1) the Program for Changjiang Scholars and Innovative Research Team in University(PCSIRT)(IRT_15R52) Guangdong Basic and Applied Basic Research Foundation(2022A1515010137,2022A1515010504,and 2021A1515111131) Shenzhen Science and Technology Program(GJHZ20210705143204014,JCYJ20210324142010029,and KCXFZ20211020170006010) Hubei Province Key Research and Development Program(2023BAB101) the Fundamental Research Funds for the Central Universities(WUT:2023IVA095 and 2023IV030h) Royal Society for a University Research Fellowship(UF150104,URFR211007)。
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部