摘要
超短基线作为一种常用的水声定位技术,具有基阵尺寸小,易于布置等优势,但存在因阵列孔径过小而定位精度欠佳等问题。对此,本文提出了一种基于宽带高阶子空间的超短基线水下声源定位方法,将水下源定位问题转换成高阶波达角的估计问题,在降低阵列孔径对定位精度影响的同时,提高了定位方法的可扩展性。该方法主要分为三个步骤:1)根据超短基线阵列构建阵列宽带信号接收模型;2)利用高阶累积量子空间方法虚拟扩展阵元数,提高阵列孔径,以此来提高目标在超短基线三维阵列结构下的方位角和俯仰角估计精度;3)根据发射信号波和接收信号波之间的时间关系,融合匹配滤波算法估计水下源斜距。在此基础上,本文针对水下目标动态姿态调整引起的定位失真问题,引入了自适应卡尔曼滤波模型来弱化噪声干扰,提出了一种基于自适应卡尔曼滤波的宽带高阶子空间动态目标定位方法。实验表明,本文提出的方法对水下声源定位具有更好的分辨率、对噪声具有更好的鲁棒性;与现主流的基于时延差、相位差的超短基线水下源定位方法相比,具有更好的定位精度。且在动态目标定位场景中,本文提出的方法平滑度更好,更加贴合于理论值,这也体现了本文动态定位方法对水下源轨迹跟踪具有更好的准确性。
Ultra-short baseline has the advantages of small array size and easy layout,but there are problems such as poor localization accuracy due to too small array aperture.This paper proposed an ultra-short baseline underwater source local-ization method based on wideband higher-order subspace,which improved the scalability of the localization method.The method was mainly divided into three steps:1)Construct the array wideband signal receiving model according to the ultra-short baseline array;2)Use the higher-order cumulant subspace method to virtually expand the number of array elements and increase the array aperture,so as to improve the accuracy of azimuth and pitch angle estimation under the ultra-short baseline three-dimensional array structure;3)According to the time relationship between the emitted signal wave and the receiving signal wave,the slant distance of the underwater source is estimated by merging the matched filter algorithm.On this basis,this paper introduced an adaptive Kalman filter model to weaken the noise interference for the localization dis-tortion problem caused by the dynamic attitude adjustment of underwater sources,and proposed a wideband higher-order subspace dynamic source localization method based on adaptive Kalman filter.Experiments show that the method proposed in this paper has better resolution for underwater source localization and better robustness to noise.Compared with the cur-rent ultra-short baseline underwater source localization method based on delay difference and phase difference,it has bet-ter localization accuracy.And in the dynamic target localization scenario,the method proposed in this paper has better smoothness and fits more closely with the theoretical value,which also reflects that the dynamic localization method in this paper has better accuracy in tracking underwater source trajectories.
作者
杨磊
黄俊达
姜龙玉
YANG Lei;HUANG Junda;JIANG Longyu(Imaging Science and Technology Laboratory,Southeast University,Nanjing,Jiangsu 210096,China;Reconfigurable and Intelligent Computing Laboratory,Anhui Polytechnic University,Wuhu,Anhui 241000,China)
出处
《信号处理》
CSCD
北大核心
2023年第10期1866-1878,共13页
Journal of Signal Processing
基金
国家自然科学基金项目(61871124)
国防科工局海洋防务创新基金(JJ-2021-702-05)
水声对抗技术重点实验室基金(2021-JCJQ-LB-033-09)等。
关键词
水声定位技术
超短基线
高阶子空间技术
自适应卡尔曼滤波
underwater acoustic localization
ultra-short baseline
higher-order subspace technology
adaptive Kalman filter