期刊文献+

一种基于点云特征选择的电力线提取方法 被引量:1

A Power Line Extraction Method Based on Point Cloud Feature Selection
原文传递
导出
摘要 激光雷达(light detection and ranging,LiDAR)技术能够快速高效地获取高精度三维点云数据。机载LiDAR不受天气影响且能在复杂地理条件下工作,已成为电力巡检的重要方法。基于机载LiDAR点云数据提取电力线是其中的关键步骤。首先利用电力线悬空的特性,得到非电力线点和电力线候选点;然后构建多类型、多邻域、多尺度的点云特征;再将离散二进制粒子群算法与支持向量机(support vec⁃tor machine,SVM)结合起来进行特征选择,根据选择出的特征子集提取电力线。对比实验表明,该方法的精度和效率都比较高。 The high-precision 3D point cloud data can be obtained quickly and efficiently by light detection and ranging(LiDAR)technology.Airborne LiDAR,which is not affected by weather and can work under complex geographical conditions,has become an important method for power line patrol,while power line extraction based on airborne LiDAR point cloud is one of the key steps.Firstly,the non-power line points and power line candidate points are distinguished through the suspension characteristics of power line.Secondly,multi-type,multi-neighborhood and multi-scale point cloud features are constructed.Then,the discrete binary particle swarm algorithm is combined with support vector machine(SVM)to select features.Finally,power lines are extracted efficiently according to the selected feature subset.Comparative experiments show that the accuracy and efficiency of the method are relatively high.
作者 黄一鸣 赖旭东 张尔严 HUANG Yiming;LAI Xudong;ZHANG Eryan(School of Remote Sensing and Information Engineering,Wuhan University,Wuhan 430079,China;Center of Digital Watershed,Wuhan University,Wuhan 430079,China;Shaanxi Tirain Science and Technology Co.,Ltd.,Xi’an 710054,China)
出处 《测绘地理信息》 CSCD 2023年第5期60-64,共5页 Journal of Geomatics
基金 国家自然科学基金(42130105)。
关键词 机载LIDAR 电力线提取 二进制粒子群算法 特征选择 airborne LiDAR power line binary particle swarm algorithm feature selection
  • 相关文献

参考文献9

二级参考文献86

  • 1赖旭东,万幼川.一种针对激光雷达强度图像的滤波算法研究[J].武汉大学学报(信息科学版),2005,30(2):158-160. 被引量:17
  • 2余国林,陈继平,余涛,张颖,陈兴峰,宁开放.无人机航空遥感平台机载作业控制系统设计[J].现代电子技术,2012,35(4):132-135. 被引量:5
  • 3陈功,程正逢,石克勤,张健,龙维.激光雷达在电力线路工程勘测设计中的应用[J].电力勘测设计,2006,18(5):53-56. 被引量:31
  • 4Eberhart R, Kennedy J. A new optimizer using particle swarm theory. Proceedings of the 6^th International Symposium on Micro Machine and Human Science. Nagoya, Japan, 1995,39-43. 被引量:1
  • 5Kennedy J, Eberhart R. Particle swarm optimization. IEEE International Conference on Neural Networks. Piscataway, New Jersy: IEEE Service Center, 1995, 1942-1948. 被引量:1
  • 6Shi Y, Eberhart R. A modified particle swarm optimizer. IEEE International Conference on Evolutionary Computation. New Jersy: IEEE Press, 1998, 69-73. 被引量:1
  • 7Aler B, Vincent J, Anyakoha C. A review of particle swarm optimization. Natural Computing, 2008, 7(3):109-124. 被引量:1
  • 8LiuJ H, FanXP, QuZH. An improvedparticle swarm optimization with mutation based on similarity. The 3^rd International Conference on Natural Computation. Haikou, China, 2007,9 : 824-828. 被引量:1
  • 9Kennedy J, Eberhart R. A discrete binary version of the particle swarm algorithm. Proceeding of the World Multieonference on Systemics, Cybernetics and Informaties. New Jersy: Piseataway, 1997, 4104-4109. 被引量:1
  • 10Salman A, Ahmad I, Al- madani S. Particle swarm optimization for task assignment problem. Microprocessors and Microsystems, 2002, 26(8) :363-371. 被引量:1

共引文献237

同被引文献18

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部