摘要
针对智能植物养护技术的高速发展以及植物病虫害防治预警的现实需求,基于Web服务技术开发植物养护与病虫害预警信息管理平台。平台主要技术结构包括Web服务器、数据库服务器、FTP服务器等,本地监控中心获得植物养护及病虫害信息后,自动做出养护指令发送到植物种植区域,调控温湿度、光照等环境参数。卷积神经网络模型识别植物叶片的病虫害,由k-means算法在颜色空间中实施像素色块聚类,提取植物叶片图像中的病斑,向管理人员发送病虫害预警信息。实验结果显示,该平台能够在较短的时间内准确获取植物病虫害信息,实时采集植物生长的环境参数。
In view of the rapid development of intelligent plant maintenance technology and the practical needs of plant pest prevention and early warning,a plant maintenance and pest early warning information management platform is developed based on Web service technology.The main technical structures of the platform include Web server,database server,FTP server,etc.After the local monitoring center obtains the plant maintenance and pest information,it will automatically send the maintenance instructions to the plant planting area to regulate the temperature,humidity,light and other environmental parameters.Convolutional neural network model identifies plant leaf diseases and pests.k-means algorithm is used to implement pixel color block clustering in color space,extract disease spots in plant leaf images,and send pest warning information to managers.The experimental results show that the platform can accurately obtain the information of plant diseases and pests in a short time,and collect the environmental parameters of plant growth in real time.
作者
刘杰
LIU Jie(College of Mechanical and Automotive Engineering,Chuzhou Polytechnic,Chuzhou Anhui 239000,China)
出处
《佳木斯大学学报(自然科学版)》
CAS
2023年第5期128-130,共3页
Journal of Jiamusi University:Natural Science Edition
基金
安徽省示范性教师企业实践流动站(2022TZPY033)
安徽省职成教学会重点项目(2020azcg50)
滁州职业技术学院校质量工程项目(2019sjjd01)
滁州职业技术学院校级自科重点项目(ZKZ-2022-03)。
关键词
WEB服务
植物养护
卷积神经网络
病虫害
预警
Web service
plant maintenance
convolution neural network
diseases and pests
early warning