摘要
对带内置可旋转隔板调谐液体阻尼器(tuned liquid damper,TLD)进行了振动台试验,首先对波高响应信号进行解耦分离,再采用不同方法识别液体晃动的模态频率和阻尼比,研究了隔板安装位置、隔板和晃动方向夹角(θ)对TLD减振性能的影响。结果表明,受隔板附加质量和耗能作用的影响,TLD的1阶模态频率和相应的模态响应随θ的增大而减小,但隔板附加模态质量对频率的影响还不足以达到导致系统失谐的程度。当θ小于60°时,TLD的1阶模态阻尼比随θ的变化而单调递增,最大可达到8%左右;当θ大于60°时,隔板所产生的阻尼作用弱化了1阶模态响应使晃动呈高阶模态形式,从而导致晃动频率大幅增大,这个结果和已有研究认为TLD晃动模态频率随着角度增加而逐步增大的结论有本质差别,意味着不能通过改变θ大小的方式来实现TLD的调谐,但改变θ可比较容易调节TLD的阻尼比使其达到振动控制所需要的最佳值。
Here,shaking table tests were conducted for a tuned liquid damper(TLD)with built-in rotatable baffles.Firstly,liquid sloshing wave height response signals in TLD were decoupled and separated,and different methods were used to identify modal frequencies and damping ratios of liquid sloshing.Effects of baffle installation position,angleθbetween baffle and sloshing direction on vibration reduction performance of TLD were studied.The results showed that the first-order modal frequency and corresponding modal response of TLD decrease with increase inθdue to influences of additional mass and energy dissipation of baffle,but effects of baffle additional modal mass on TLD frequency are not sufficient to cause system detuning;whenθis less than 60°,the first-order modal damping ratio of TLD monotonically increases with change ofθ,the maximum value can reach around 8%;whenθis larger than 60°,damping action generated by baffle weakens the first-order modal response to cause sloshing having a higher-order modal form and a significant increase in sloshing frequency,this result is fundamentally different from the previous study conclusion of TLD sloshing modal frequency gradually increasing with increase inθ,so TLD tuning can’t be realized by changingθ,but changingθcan easily adjust damping ratio of TLD to reach the optimal value required for vibration control.
作者
张蓝方
谢壮宁
周子杰
彭肇才
ZHANG Lanfang;XIE Zhuangning;ZHOU Zijie;PENG Zhaocai(State Key Lab of Subtropical Building Science,South China University of Technology,Guangzhou 510640,China;Guangdong Modern Architectural Design and Consultancy Co.,Ltd.,Shenzhen 518010,China)
出处
《振动与冲击》
EI
CSCD
北大核心
2023年第19期64-69,103,共7页
Journal of Vibration and Shock
基金
国家自然科学基金资助项目(52078221)
广东省现代土木工程技术重点实验室资助项目(2021B1212040003)。