期刊文献+

基于鲸鱼粒子群融合算法的MPPT研究 被引量:2

Research on MPPT based on whale particle swarm hybrid algorithm
下载PDF
导出
摘要 在局部阴影遮挡条件下,经典最大功率点跟踪(MPPT)算法容易失效,导致无法追踪到最大功率点,针对此问题,提出了一种基于鲸鱼粒子群融合算法的多峰MPPT控制策略。该算法实现了混合算法的优势互补,增强了鲸鱼算法后期收敛效率,且避免了粒子群算法易停滞于局部极值的缺陷,提高了鲸鱼粒子群融合算法的收敛精度和寻优效率。在MATLAB/Simulink环境中建立光伏阵列仿真模型,仿真结果表明:该算法追踪过程中震荡幅度减小,能够快速准确地搜索到最大功率点。 Under the condition of local shadow occlusion,the classical MPPT algorithm is easy to fail and can not track the maximum power point.To solve this problem,a multi peak MPPT control strategy based on whale particle swarm optimization algorithm was proposed.This algorithm realizes the complementary of the hybrid algorithm,enhances the later convergence efficiency of the whale algorithm,avoids the defect that the particle swarm optimization algorithm is easy to stagnate at the local extreme value,and improves the convergence accuracy and optimization efficiency of the whale particle swarm hybrid algorithm.The simulation model of photovoltaic array was established in MATLAB/Simulink environment.The simulation results show that the oscillation amplitude of algorithm reduces during the tracking process,and the maximum power point can be quickly and accurately searched.
作者 贠武超 YUN Wuchao(School of Electrical Engineering,Zhengzhou University,Zhengzhou Henan 450001,China)
出处 《电源技术》 CAS 北大核心 2023年第10期1351-1354,共4页 Chinese Journal of Power Sources
关键词 输出特性 最大功率点跟踪 鲸鱼算法 粒子群算法 output characteristic maximum power point tracking whale optimization algorithm particle swarm optimization algorithm
  • 相关文献

参考文献4

二级参考文献29

共引文献17

同被引文献16

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部