期刊文献+

Ensemble learning framework for landslide susceptibility mapping:Different basic classifier and ensemble strategy 被引量:2

原文传递
导出
摘要 The application of ensemble learning models has been continuously improved in recent landslide susceptibility research,but most studies have no unified ensemble framework.Moreover,few papers have discussed the applicability of the ensemble learning model in landslide susceptibility mapping at the township level.This study aims at defining a robust ensemble framework that can become the benchmark method for future research dealing with the comparison of different ensemble models.For this purpose,the present work focuses on three different basic classifiers:decision tree(DT),support vector machine(SVM),and multi-layer perceptron neural network model(MLPNN)and two homogeneous ensemble models such as random forest(RF)and extreme gradient boosting(XGBoost).The hierarchical construction of deep ensemble relied on two leading ensemble technologies(i.e.,homogeneous/heterogeneous model ensemble and bagging,boosting,stacking ensemble strategy)to provide a more accurate and effective spatial probability of landslide occurrence.The selected study area is Dazhou town,located in the Jurassic red-strata area in the Three Gorges Reservoir Area of China,which is a strategic economic area currently characterized by widespread landslide risk.Based on a long-term field investigation,the inventory counting thirty-three slow-moving landslide polygons was drawn.The results show that the ensemble models do not necessarily perform better;for instance,the Bagging based DT-SVM-MLPNNXGBoost model performed worse than the single XGBoost model.Amongst the eleven tested models,the Stacking based RF-XGBoost model,which is a homogeneous model based on bagging,boosting,and stacking ensemble,showed the highest capability of predicting the landslide-affected areas.Besides,the factor behaviors of DT,SVM,MLPNN,RF and XGBoost models reflected the characteristics of slow-moving landslides in the Three Gorges reservoir area,wherein unfavorable lithological conditions and intense human engineering activities(i.e.,reservoir water level fluctuation,residen
出处 《Geoscience Frontiers》 SCIE CAS CSCD 2023年第6期170-190,共21页 地学前缘(英文版)
基金 This research was funded by the National Natural Science Foundation of China(Grant No.41877525) the National Natural Science Foundation of China(Grant No.41601563)。
  • 相关文献

同被引文献26

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部