期刊文献+

新型二阶磁控忆阻器简化模型的设计与验证

Design and verification of simplified model of new second-order magnetron memristor
下载PDF
导出
摘要 忆阻理论的提出极大地推进了混沌系统的发展,丰富了混沌电路的动力学行为。运算放大器因其强大的信号处理能力,成为忆阻器电路模型的重要组成部分。本文基于低功耗差分对构建了一种极简化的运算放大器,该运算放大器将所需晶体管数目减少至2个;以此运算放大器为基础,设计了新型二阶磁控忆阻器的模拟等效电路模型和硬件实验电路。结果表明:激励信号频率增加,斜“8”字形紧磁滞回线的旁瓣面积减小;激励信号幅度增加,斜“8”字形紧磁滞回线的旁瓣面积增加。电路仿真结果与硬件电路实验结果验证了新型磁控忆阻器模型的有效性与设计方法的正确性。 The proposal of memristor theory has greatly promoted the development of chaotic systems,enriching the dynamics of chaotic circuits.The operational amplifier becomes an important part of the memory circuit model due to its powerful signal processing capacity.In this paper,a simplified operational amplifier based on low power differential pair is constructed and this operational amplifier reduces the number of required transistors to two.Then,the simulation equivalent circuit model and hardware experimental circuit of a new type of second-order magnetron memristor are created.The results show that with the increase of the excitation signal frequency,the side lobe area of the"8"decreases;with the increase of the excitation signal amplitude,the side lobe area of the"8"increases.The results of circuit simulation and hardware circuit experiments have verified the validity of the new model of magnetron memristor and the accuracy of the design method.
作者 肖力 熊炳军 肖宪伟 杨健 贺娇娇 汪洋 金湘亮 XIAO Li;XIONG Bingjun;XIAO Xianwei;YANG Jian;HE Jiaojiao;WANG Yang;JIN Xiangiang(School of Physics and Electronic Science,Hunan Normal University,Changsha Hunan 410081,China)
出处 《太赫兹科学与电子信息学报》 2023年第10期1271-1277,共7页 Journal of Terahertz Science and Electronic Information Technology
基金 国家自然科学基金资助项目(61827812) 湖南省科技厅湖湘高层次人才聚集资助项目(2019RS1037) 湖南省科学技术厅创新计划资助项目(2020GK2018,2019GK4016,2020RC1003)。
关键词 低功耗差分对 新型二阶磁控忆阻器简化模型 磁滞回线 low power differential pair simplified model of new second-order magnetron control memristor hysteresis loop
  • 相关文献

参考文献6

二级参考文献91

  • 1王繁珍,齐国元,陈增强,袁著祉.一个四翼混沌吸引子[J].物理学报,2007,56(6):3137-3144. 被引量:46
  • 2Chua L O 2011 Appl. Phys. A: Mater. Sci. Process 102 765. 被引量:1
  • 3Chua L O 1971 IEEE Trans. Circuit Theory CT-18 507. 被引量:1
  • 4Itoh M and Chua L O 2009 Int. J. Bifurc. Chaos 19 3605. 被引量:1
  • 5Borghettil J, Snider G S, Kuekes P J, Yang J J, Stewart D R and Williams R S 2010 Nature Lett. 464 873. 被引量:1
  • 6Strukov D B, Snider G S, Stewart D R and Williams R S 2008 Nature 453 80. 被引量:1
  • 7Kim H, Sah M P, Yang C, Roska T and Chua L O 2012 IEEE Trans. Circuit Syst. I: Regular Papers 59 148. 被引量:1
  • 8Wang F 2013 IEEE Trans. Circuits Syst. I: Regular Papers 60 616. 被引量:1
  • 9Muthuswamy B 2010 Int. J. Bifurc. Chaos 20 1335. 被引量:1
  • 10Bao B C, Xu J P, Zhou G H, Ma Z H and Zou L 2011 Chin. Phys. B 20 120502. 被引量:1

共引文献79

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部