期刊文献+

间隙Sn掺杂促进铋电催化CO_(2)到甲酸盐的转化 被引量:1

Interstitial Sn-doping promotes electrocatalytic CO_(2)-to-formate conversion on bismuth
原文传递
导出
摘要 电化学CO_(2)还原(CO_(2)RR)是一种很有前景的技术,可以将二氧化碳转化为多种增值化学品,从而达到减缓温室效应的目的.然而,实现目标产品的高催化活性、选择性和稳定性仍然是一个很大的挑战.本文通过还原Sn掺杂的Bi2S3制备了间隙掺杂的Snx-Bi (x为Sn与Bi的原子比,x=1/2,1/16,1/24或1/40)纳米线束(NBs).值得注意的是,Sn1/24-Bi NBs在1400 mV的宽电位窗口内表现出超高的甲酸盐选择性(从-0.5到-1.9 V vs.可逆氢电极(RHE),法拉第效率超过90%),在-1.9 V vs.RHE时,电流密度达到了-319 mA cm^(-2),可满足工业使用需求.此外,还实现了在~-200 mA cm^(-2)条件下超过84 h的超长稳定性.实验结果和密度泛函理论计算表明,间隙掺杂Sn优化了*OCHO中间体的吸附亲和力,降低了铋催化剂的电子转移能垒,从而获得了显著的CO_(2)RR性能.本研究为设计具有优异催化活性、选择性和耐久性的掺杂型电催化剂用于CO_(2)RR为甲酸盐提供了启示. Electrochemical CO_(2) reduction(CO_(2)RR)is a promising technology to mitigate the greenhouse effect and convert CO_(2) to value-added chemicals.Yet,achieving high catalytic activity,selectivity,and stability for target products is still a big challenge.Herein,interstitially Sn-doped Bi(Snx-Bi,x is the atomic ratio of Sn to Bi,x=1/2,1/16,1/24 or 1/40)nanowire bundles(NBs)are prepared by reducing Sn-doped Bi2S3.Notably,Sn1/24-Bi NBs exhibit ultrahigh formate selectivity over a broad potential window of 1400 mV(Faradaic efficiency over 90%from−0.5 to−1.9 V vs.reversible hydrogen electrode(RHE))with an industry-compatible current density of−319 mA cm^(-2) at−1.9 V vs.RHE.Moreover,superior long-term stability for more than 84 h at~−200 mA cm^(-2) is realized.Experimental results and density functional theory(DFT)calculations reveal that interstitially doped Sn optimizes the adsorption affinity of*OCHO intermediate and reduces the electron transfer energy barrier of bismuth catalyst,resulting in the remarkable CO_(2)RR performance.This study provides valuable inspiration for the design of doped electrocatalysts with enhanced catalytic activity,selectivity,and durability for electrochemical CO_(2)-to-formate conversion.
作者 徐鑫 危洋 米林华 潘国栋 何亚军 蔡思婷 郑朝杨 江雅明 陈斌 李留义 钟升红 黄建峰 胡文彬 于岩 Xin Xu;Yang Wei;Linhua Mi;Guodong Pan;Yajun He;Siting Cai;Chaoyang Zheng;Yaming Jiang;Bin Chen;Liuyi Li;Shenghong Zhong;Jianfeng Huang;Wenbin Hu;Yan Yu(Key Laboratory of Advanced Materials Technologies,International(Hong Kong Macao and Taiwan)Joint Laboratory on Advanced Materials Technologies,College of Materials Science and Engineering,Fuzhou University,Fuzhou 350108,China;Institute of Advanced Interdisciplinary Studies,School of Chemistry and Chemical Engineering,Chongqing University,Chongqing 400044,China;Joint School of National University of Singapore and Tianjin University,International Campus of Tianjin University,Binhai New City,Fuzhou 350207,China)
出处 《Science China Materials》 SCIE EI CAS CSCD 2023年第9期3539-3546,共8页 中国科学(材料科学(英文版)
基金 supported by the National Key Research and Development Program of China (2020YFA0710303) the National Natural Science Foundation of China (U1905215, 51672046, 51672047 and 22109025) the Scientific Research Foundation of Fuzhou University (510936) the support from the Fundamental Research Funds for the Central Universities (2020CDJQY-A072) the Venture and Innovation Support Program for Chongqing Overseas Returnees (cx2020107) the Natural Science Foundation of Chongqing (cstc2021jcyj-msxmX0945)。
关键词 密度泛函理论计算 电子转移 间隙掺杂 电催化 甲酸盐 Sn掺杂 电化学 能垒 interstitial doping CO_(2)reduction formate electrocatalysis bismuth
  • 相关文献

同被引文献11

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部