期刊文献+

Forward stagewise regression with multilevel memristor for sparse coding

下载PDF
导出
摘要 Sparse coding is a prevalent method for image inpainting and feature extraction,which can repair corrupted images or improve data processing efficiency,and has numerous applications in computer vision and signal processing.Recently,sev-eral memristor-based in-memory computing systems have been proposed to enhance the efficiency of sparse coding remark-ably.However,the variations and low precision of the devices will deteriorate the dictionary,causing inevitable degradation in the accuracy and reliability of the application.In this work,a digital-analog hybrid memristive sparse coding system is pro-posed utilizing a multilevel Pt/Al_(2)O_(3)/AlO_(x)/W memristor,which employs the forward stagewise regression algorithm:The approxi-mate cosine distance calculation is conducted in the analog part to speed up the computation,followed by high-precision coeffi-cient updates performed in the digital portion.We determine that four states of the aforementioned memristor are sufficient for the processing of natural images.Furthermore,through dynamic adjustment of the mapping ratio,the precision require-ment for the digit-to-analog converters can be reduced to 4 bits.Compared to the previous system,our system achieves higher image reconstruction quality of the 38 dB peak-signal-to-noise ratio.Moreover,in the context of image inpainting,images containing 50%missing pixels can be restored with a reconstruction error of 0.0424 root-mean-squared error.
出处 《Journal of Semiconductors》 EI CAS CSCD 2023年第10期105-113,共9页 半导体学报(英文版)
基金 This work was supported by the National Key R&D Program of China(Grant No.2019YFB2205100) in part by Hubei Key Laboratory of Advanced Memories.
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部