期刊文献+

基于机器学习的车用发动机性能预测及优化方法研究 被引量:1

Study on Vehicle Engine Performance Prediction and Optimization Method Based on Machine Learning
下载PDF
导出
摘要 随着人工智能技术的不断进步,基于机器学习的研究方法逐渐被应用于解决车用发动机性能优化问题。本文提出了一种基于机器学习的车用发动机性能预测及优化方法,并进行了案例研究:通过利用台架试验数据,建立了遗传算法-反向传播神经网络(GA-BPNN)预测模型,对发动机功率和有效燃油消耗率(BSFC)实现了较为准确的预测,误差率仅分别为1.58%和1.72%。此外,采用交叉遗传-粒子群(CMPSO)算法对功率和BSFC进行了多目标优化,将最优控制参数输入到台架试验中,得到的功率和BSFC的实际运行值与优化值基本一致。研究结果证明了本文提出的方法的有效性。该方法在保证一定精度的前提下,大幅减少了时间和经济成本的投入,为发动机性能优化研究提供了一种新的工作思路。 As artificial intelligence technology continues to advance,research methods based on machine learning are gradually being applied to address automotive engine performance optimization problems.This paper proposes a machine learning-based method for predicting and optimizing automotive engine performance and presents a case study:a GA-BPNN prediction model is established using chassis test data to achieve reasonably accurate predictions of engine power and BSFC with errors of only 1.58%and 1.72%,respectively.Additionally,a CMPSO algorithm is applied to perform multi-objective optimization of power and BSFC.The optimal control parameters are then implemented in the chassis test,resulting in closely matching actual operational values with the optimized values.The research findings demonstrate the effectiveness of the proposed method.This approach,while ensuring a certain level of accuracy,significantly reduces time and economic costs,providing a new avenue for research in engine performance optimization.
作者 王威 刘吉绪 吴春玲 韩松 李国田 郝婧 WANG Wei;LIU Jixu;WU Chunling;HAN Song;LI Guotian;HAO Jing(China Automotive Technology and Research Center Co.,Ltd.,Tianjin 300300,China)
出处 《内燃机》 2023年第5期28-34,共7页 Internal Combustion Engines
基金 国家重点研发项目(2022YFC3703600)。
关键词 发动机功率 有效燃油消耗率 机器学习 反向传播神经网络 优化 粒子群优化算法 engine power brake specific fuel consumption machine learning back propagation neural networks optimization particle swarm ptimization
  • 相关文献

参考文献8

二级参考文献80

  • 1张志镕.云计算技术在计算机网络中的应用[J].计算机产品与流通,2020,0(6):47-47. 被引量:7
  • 2GB13223-2011.火电厂大气污染物排放标准[S].环境保护部:国家质量监督检验检疫总局,2011. 被引量:115
  • 3M a咬nnikk o咬M,Skoglundh M,Ingelsten H H.Selective catalytic reduction of NOxwith methanol over supported silver catalysts[J].Applied Catalysis B:Environmental,2012(119):256-266. 被引量:1
  • 4Satsuma A,Shimizu K.In situ FT/IR study of selective catalytic reduction of NO over alumina-based catalysts[J].Progress in Energy and Combustion Science,2003,29(1):71-84. 被引量:1
  • 5Liu J,Li X,Zh ao Q,et al.Insight into the mechanism of selective catalytic reduction of NOxby propene over the Cu/Ti0.7Zr0.3O2catalyst by fourier transform infrared spectroscopy and density functional theory calculations[J].Environmental Science and Technology,2013,47(9):4528-4535. 被引量:1
  • 6Yang W,Zhang R,Chen B,et al.New Aspects on the mechanism of C3H6selective catalytic reduction of NO in the presence of O2over La Fe1-x(Cu,Pd)xO3-δperovskites[J].Environmental Science and Technology,2012,46(20):11280-11288. 被引量:1
  • 7Meunier F C,Zuzaniuk V,Breen J P,et al.Mechanistic differences in the selective reduction of NO by propene over cobalt-and silver-promoted alumina catalysts:kinetic and in situ DRIFTS study[J].Catalysis Today,2000,59(3):287-304. 被引量:1
  • 8Auroux A,Sprinceana D,Gervasini A.Support effects on de-NOxcatalytic properties of supported tin oxides[J].Journal of Catalysis,2000,195(1):140-150. 被引量:1
  • 9Bennici S,Gervasini A,Ravasio N,et al.Optimization of tailoring of Cu Oxspecies of silica alumina supported catalysts for the selective catalytic reduction of NOx[J].The Journal of Physical Chemistry B,2003,107(22):5168-5176. 被引量:1
  • 10Sounak R,Hegde M S,Giridhar M.Catalysis for NOx abatement[J].Applied Energy,2009,86(11):2283-2297. 被引量:1

共引文献56

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部