期刊文献+

基于累计特征提取和RCNN的滚动轴承剩余使用寿命预测

Prediction of Remaining Service Life of Rolling Bearings Based on Cumulative Feature Extraction and RCNN
下载PDF
导出
摘要 对轴承振动信号的累计特征进行提取,在此基础上提出基于循环卷积神经网络(Recurrent Convolutional Neural Network,RCNN)的滚动轴承剩余使用寿命(Remaining Useful Life,RUL)预测模型。该预测模型通过构建循环卷积层增强神经网络对时间依赖性的学习,通过变分推理量化RUL预测中RCNN的不确定性。通过试验将基于RCNN的滚动轴承RUL预测模型与回归预测模型的预测结果相对比,验证该基于RCNN的预测模型的有效性。 The cumulative characteristics of bearing vibration signals are extracted,and a rolling bearing RUL prediction model based on the Recurrent Convolutional Neural Network(RCNN)is proposed on this basis.The prediction model enhances the learning of time dependence of neural networks by constructing cyclic convolutional layers and quantifies the uncertainty of RCNN in RUL prediction with variational reasoning.The effectiveness of the RCNN prediction model is verified when the prediction results of the RCNN based prediction model is compared with that of the regression prediction model in the experiments.
作者 潘冬伟 范志川 姬永波 项乔 PAN Dongwei;FAN Zhichuan;JI Yongbo;XIANG Qiao(IT Research Institute,Shanghai JiangnanChangxing Shipbuilding Co.,Ltd.,Shanghai 201913,China)
出处 《船舶与海洋工程》 2023年第5期78-85,共8页 Naval Architecture and Ocean Engineering
基金 工信部高技术船舶项目(CJ04N20)。
关键词 滚动轴承 剩余使用寿命(RUL)预测 累计特征变换 循环卷积神经网络(RCNN) 深度学习 rolling bearing remaining service life prediction cumulative feature transformations recurrent convolutional neural network(RCNN) deep learning
  • 相关文献

参考文献3

二级参考文献19

共引文献95

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部