期刊文献+

基于改进粒子群算法的配电网故障恢复研究 被引量:5

Study on fault recovery of distribution network based on improved particle swarm algorithm
下载PDF
导出
摘要 为了解决分布式电源的不确定性和负荷需求变化对配电网故障恢复带来的困扰,文章提出了一种基于改进粒子群算法的配电网故障恢复方法.首先构建风-光-储和负荷需求模型,其次考虑用户侧管理资源和联络开关状态集的调整,进行精确的孤岛划分和优化.然后采用改进粒子群算法对配电网进行重构.粒子群算法易陷入局部最优,引入Levy飞行策略、融合柯西变异和反向学习策略,可以提高寻优效率.最后在IEEE33系统仿真验证,结果表明,文章所提故障恢复方法不仅使更多重要负荷得到恢复,同时还能起到降低网损和改善电压偏差的作用,与其他方法相比,可以使故障快速有效的达到恢复效果. In order to solve the problems caused by the uncertainty of distributed generation and load demand change on the fault recovery of distribution network,this paper proposes a fault recovery method for distribution network based on improved particle swarm algorithm.First of all,the wind-solar-storage and load demand model are constructed,and secondly,the user-side management resources and the adjustment of the contact switch state set are considered to carry out accurate island partition and optimization.Then,an improved particle swarm algorithm is used to reconstruct the distribution network.Since the particle swarm algorithm is easy to fall into local optimum,the Levy flight strategy,fusion Cauchy mutation and reverse learning strategy are introduced to improve the optimization efficiency.Finally,in the IEEE33 system simulation verification,the results show that the fault recovery method proposed in this paper not only restores more important loads,but also plays a role in reducing network loss and improving voltage deviation,and compared with other methods,the fault recovery effect can be quickly and effectively achieved.
作者 王以琳 谢华北 闫杨舒 高遥 崔世庭 朱瑞金 WANG Yi-lin;XIE Hua-bei;YAN Yang-shu;GAO Yao;CUI Shi-ting;ZHU Rui-jin(College of Water Conservancy Project and Civil Engineering,Tibet Agricultural and Animal Husbandry University,Nyingchi 860000,China;College of Electric Engineering,Tibet Agricultural and Animal Husbandry University,Nyingchi 860000,China)
出处 《陕西科技大学学报》 北大核心 2023年第5期174-181,共8页 Journal of Shaanxi University of Science & Technology
基金 国家自然科学基金项目(52167015)。
关键词 故障恢复 孤岛划分 重构 改进粒子群算法 fault recovery island partition reconstruction improved particle swarm algorithm
  • 相关文献

参考文献17

二级参考文献189

共引文献600

同被引文献117

引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部