期刊文献+

基于不同工况下的锂离子电池可用容量预测模型

Prediction model for the available capacity of lithium-ion batteries based on different operating conditions
下载PDF
导出
摘要 锂离子电池是诸多设备的主要动力能源,在不同工况下对锂离子电池可用容量的准确预测十分关键。针对目前Peukert方程只能应用于恒温恒流放电情况下可用容量预测的局限性,本工作提出了一种基于不同工况下的锂离子电池可用容量预测优化模型,通过改进Peukert方程并提供合理的系数生成方法,实现了在变温度和倍率条件下对可用容量的准确预测。并通过实验测试了锂电池在不同温度和放电速率下的放电性能,拟合了电池容量保持率与电池平均温度的曲线,使用Arrhenius方程进行分析,通过最小二乘法确定了方程中的参数,根据预测优化模型进行了各种放电情况下的计算,验证了所提出的等效容量方法可以准确预测电池的实际放电容量。最后,利用预测优化模型和实验验证了温度对电池容量的影响,得出当环境温度高于25℃时,电池容量对放电速率的影响较小;当环境温度低于25℃时,温度对电池容量有显著影响,呈现出先下降后随着放电速率增加而增加的趋势的结论,结果说明了电池的平均温度对其容量有较大影响,但高温对电池容量的影响较低温小,需引入温度补偿系数k来考虑平均温度对电池容量的影响。 Lithium-ion batteries(LIBs) are the main power source of many devices;hence,the accurate prediction of their usable capacity under different operating conditions is crucial.In response to the limitations of the current Peukert equation,which can only be applied to predict the available capacity of LIBs under constant temperature and current discharge conditions,this study proposes an optimization model for predicting the available capacity of LIBs under different operating conditions.The accurate prediction of the available capacity of LIBs under variable temperature and rate conditions is realized by improving the Peukert equation and providing a reasonable coefficient generation method.The discharge performance of LIBs at different temperatures and discharge rates is tested through experiments.The curve between the battery capacity retention rate and the average battery temperature is then fitted.The Arrhenius equation is used for the analysis,and the equation parameters are determined using the least squares method.The calculations conducted under various discharge conditions based on the predicted optimization model verify that the proposed equivalent capacity method accurately predicts the battery's actual discharge capacity.Finally,the predictive optimization model and experiments are used to confirm the effect of temperature on the battery capacity.The impact of the battery capacity on the discharge rate is found to be relatively small when the ambient temperature is above 25 ℃.The ambient temperature below 25 ℃ significantly affects the battery capacity,showing a decreasing to increasing trend with the discharge rate increase.The results indicate that the average temperature significantly affects the battery capacity.Moreover,the high temperature has a smaller effect than the low temperature.Therefore,a temperature compensation coefficient k must be introduced to consider the effect of the average temperature on the battery capacity.
作者 窦鹏 刘鹏程 曾立腾 李炬晨 卢丞一 DOU Peng;LIU Pengcheng;ZENG Liteng;LI Juchen;LU Chengyi(EVE Energy Co.,Ltd.,Huizhou 516000,Guangdong,China;Northwestern Polytechnical University,Xi'an 710000,Shaanxi,China)
出处 《储能科学与技术》 CAS CSCD 北大核心 2023年第10期3214-3220,共7页 Energy Storage Science and Technology
基金 国家重点研发计划(2020YFB1313200,2022YFC2805200)。
关键词 锂离子电池 可用容量 变温度条件 Peukert方程 lithium-ionbattery availablecapacity variable temperature conditions peukert equation
  • 相关文献

参考文献1

二级参考文献21

  • 1陈全世,林成涛.电动汽车用电池性能模型研究综述[J].汽车技术,2005(3):1-5. 被引量:85
  • 2Yoon S, Hwang I , Lee G, et al. Power capabilityanalysis in lithium ion batteries using electrochemicalimpedance spectroscopy [J] . Journal of ElectroanalyticalChemistry, 2011, 6 5 5 (1 ) : 32-38. 被引量:1
  • 3Plett G L. High-performance battery-pack powerestimation using a dynamic cell model [J] . IEEETransactions on Vehicular Technology, 2004,5 3 ( 5 ) :1586-1593. 被引量:1
  • 4Zhang G P, Zhang G N , Sharkh S M. Estimation ofreal-time peak power capability of a traction battery packused in an HEV [G] / / Asia-Pacific Power and EnergyEngineering Conference, Chengdu, 2010: 1-6. 被引量:1
  • 5Xiong R , He H , Sun F, et al. Online estimation ofpeak power capability of Li-ion batteries in electricvehicles by a hardware-in-loop approach [J] . Energies,2012, 5 ( 1 2 ) : 1455-1469. 被引量:1
  • 6Sun Fengchun, Xiong R ui, He Hongwen, et al.Model-based dynamic multi-parameter method for peakpower estimation of lithium-ion batteries [J] . AppliedEnergy, 2013, 9 6 ( 3 ) : 378-386. 被引量:1
  • 7Xiong R u i, He Hongwen, Sun Fengchun, et al.Model-based state of charge and peak power capabilityjoint estimation of lithium-ion battery in plug-in hybridelectric vehicles[J] . Journal of Power Sources, 2013 ,2 2 9 (9 ) : 159-169. 被引量:1
  • 8Dubarry M , Trnchot G G, Liaw B Y , et al. Evaluationof commercial lithium-ion cells based on compositepositive electrode for plug-in hybrid electric vehicleapplications I I I : effect of thermal excursions withoutprolonged thermal aging[J] . Journal of theElectrochemical Society, 2013, 1 6 0(1) : A191-A199. 被引量:1
  • 9Liu X , Chen Z ,Zhang G, et al. A novel temperaturecompensatedmodel for power Li-ion batteries with dualparticle-filter state of charge estimation [J] . AppliedEnergy, 2014, 12 3 (3) : 263-272. 被引量:1
  • 10Fleischera G, Waaga W , Baia Z , et al. Self-learningstate-of-available-power prediction for lithium-ionbatteries in electrical vehicles [G] //IE E E Vehicle Powerand Propulsion Conference, Seoul, 2012: 370-375. 被引量:1

共引文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部