期刊文献+

An adaptive graph embedding method for feature extraction of hyperspectral images based on approximate NMR model

原文传递
导出
摘要 This paper introduces an approximate nuclear norm based matrix regression projection(ANMRP) model,an adaptive graph embedding method,for feature extraction of hyperspectral images.The ANMRP utilizes an approximate NMR model to construct an adaptive neighborhood map between samples.The globally optimal weight matrix is obtained by optimizing the approximate NMR model using fast alternating direction method of multipliers(ADMM).The optimal projection matrix is then determined by maximizing the ratio of the local scatter matrix to the total scatter matrix,allowing for the extraction of discriminative features.Experimental results demonstrate the effectiveness of ANMRP compared to related methods.
出处 《Optoelectronics Letters》 EI 2023年第7期443-448,共6页 光电子快报(英文版)
基金 supported by the National Natural Science Foundation of China (No.61906170) the Project of the Science and Technology Plan for Zhejiang Province (No.LGF21F020023) the Plan Project of Ningbo Municipal Science and Technology (Nos.2022Z233,2021Z050,2022S002 and 2023J403)。
  • 相关文献

参考文献1

二级参考文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部