期刊文献+

基于结构纹理分解的红外与可见光图像融合算法

Infrared and visible image fusion algorithm based on structure-texture decomposition
下载PDF
导出
摘要 针对红外与可见光图像融合中存在的热目标信息丢失、边缘结构模糊、细节损失等问题,提出一种多层分解的图像融合算法。首先使用结构纹理分解将源图分解为细节层和结构层,对细节层使用基于结构相似性和L2范数的融合规则融合并增强;然后提出一种结构均值法,将结构层分解为亮度层和基础层,对亮度层使用绝对值取大融合,对基础层设计了一种基于多指标的融合规则进行融合;最后重构各子融合图像得到最终融合图像。为验证算法的有效性,与9种红外与可见光图像融合算法进行对比,使用空间频率、平均梯度、边缘强度、方差、视觉保真度、基于人类视觉感知的指标和信息熵7种客观图像评价指标,在前5种指标上分别取得27.4%、36.5%、38.2%、8.5%和23.5%的提升。实验结果表明,本文算法在有效保留红外热目标的同时较好地保留了边缘结构和纹理细节,且在客观评价指标上取得了更好的效果。 In order to solve the problems of thermal target information loss,edge structure blur and detail loss in infrared and visible image fusion,an infrared and visible image fusion algorithm is proposed based on structure-texture decomposition.Firstly,the source images are decomposed into detail layer and structural layer by structure-texture decomposition,and the detail layer is fused and enhanced by fusion rule based on structural similarity and L2 norm.Then,a structure-average method is proposed to decompose the structural layer into luminance layer and basic layer.The absolute-value-maximum is used to fuse the luminance layer,and a fusion rule based on multi-indicators is designed for the basic layer.Finally,the fused sub-images are reconstructed to get the final fused image.In order to verify the effectiveness of our algorithm,it is compared with nine infrared and visible image fusion algorithms,and seven objective evaluating indicators are used including spatial frequency,average gradient,edge intensity,variance,visual information fidelity,the metric based on human visual perception and information entropy.The first five indicators are improved by 27. 4%,36. 5%,38. 2%,8. 5% and 23. 5%, respectively. The experimental results show that the proposed algorithm not only effectively retains the infrared thermal target, but also retains the edge structure and texture details, and achieves better results in the objective evaluating indicators.
作者 李青松 杨莘 吴谨 黄泽丰 LI Qing-song;YANG Shen;WU Jin;HUANG Ze-feng(School of Information Science and Engineering,Wuhan University of Science and Technology,Wuhan 430081,China)
出处 《液晶与显示》 CAS CSCD 北大核心 2023年第10期1389-1398,共10页 Chinese Journal of Liquid Crystals and Displays
基金 国家自然科学基金(No.61702384)。
关键词 图像处理 图像融合 结构纹理分解 红外图像 可见光图像 image processing image fusion structure-texture decomposition infrared image visible image
  • 相关文献

参考文献4

二级参考文献32

  • 1刘刚,敬忠良,孙韶媛,李建勋,李振华,Henry Leung.Image fusion based on expectation maximization algorithm and steerable pyramid[J].Chinese Optics Letters,2004,2(7):386-389. 被引量:10
  • 2刘艳,李宏东.DCT域图象处理和特征提取技术[J].中国图象图形学报(A辑),2003,8(2):121-128. 被引量:21
  • 3ZHANG ZH,BLUM R S.A Categorization of multiscale-decomposition-based image fusion schemes with a performance study for a digital camera application[J].Proceedings of the IEEE,1999,87(8):1315-1326. 被引量:1
  • 4LI H,MANJUNATH B S,MITRA S K.Multisensor image fusion using the wavelet transform[J].Graphical Models and Image Processing,1995,57(3):235-245. 被引量:1
  • 5PAJARES G,CRUZ J M.A wavelet-based image fusion tutorial[J].Pattern Recognition,2004,37(9):1855-1872. 被引量:1
  • 6JIANG J M,FENG G C.The spatial relationship of DCT coefficients between a block and its sub blocks[J].IEEE Transactions on Signal Processing,2002,50(5):1160-1169. 被引量:1
  • 7TANG J SH.A contrast based image fusion technique in the DCT domain[J].Digital Signal Processing,2004,14(3):218-226. 被引量:1
  • 8MALLAT S G.A Theory for multiresolution signal decomposition:the wavelet representation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1989,11 (7):674-693. 被引量:1
  • 9MALLAT S G.Multifrequency channel decompositions of images and wavelet models[J].IEEE Transactions on Acoustics.Speech.and Signal Processing,1989,37(12):2091-2110. 被引量:1
  • 10李建林,俞建成,孙胜利.基于梯度金字塔图像融合的研究[J].科学技术与工程,2007,7(22):5818-5822. 被引量:13

共引文献83

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部