期刊文献+

基于机器学习的联合作战任务筹划模型

Mission planning for joint operations based on machine learning
下载PDF
导出
摘要 战争复杂性日益提高,快速完成作战任务筹划对于提高指挥效率至关重要。提出了联合作战任务矩阵分析模型,为作战任务筹划提供了一种理论方法;以此为基础,构建作战任务-支撑要素-威胁要素信念网络模型;设计了信念网络关键参数的贝叶斯学习方法,采用想象力机制来提高算法在自博弈学习中的收敛速度;给出了一种深度最小威胁生成树搜索算法,该算法能够通过平衡搜索误差和搜索速度,高效完成任务优先级排序。最后,通过仿真实验验证了上述模型和算法的有效性。 The complexity of modern war is increasing,and the rapid operational mission planning is of great importance to improve the efficiency of command and control.This paper presents a joint operational Task Matrix(TM)model,which is a theoretical method for mission planning.A belief network model is put forward to describe the relationship among the elements in TM model.A naive bayesian learning method for belief network is designed.A mechanism of imagination is put forward to speed up the learning process.A search algorithm named Deep Minimum Threat Generation Tree(DMTGT)is proposed,which can efficiently calculate task priority by balancing search error and search speed.Finally,the validity of above models and algorithms is verified by simulation experiments.
作者 王续涵 陶九阳 吴琳 WANG Xuhan;TAO Jiuyang;WU Lin(Joint Operations College,Beijing 100091,China)
出处 《指挥控制与仿真》 2023年第5期92-98,共7页 Command Control & Simulation
关键词 信念网络 机器学习 作战筹划 态势感知 belief network machine learning operation planning situation awareness
  • 相关文献

参考文献3

二级参考文献44

  • 1吴晓涛,孙增圻.用遗传算法进行路径规划[J].清华大学学报(自然科学版),1995,35(5):14-19. 被引量:76
  • 2高惠英.任务规划系统的发展[J].飞航导弹,1997(4):12-18. 被引量:14
  • 3Goldberg K.Completeness in Robot Motion Planning[M].Los Angeles.University of southern California Publishers,1991. 被引量:1
  • 4Parsons D,Canny J.A Motion Planner for Multiple Mobile Robots[A].Proc.ICRA[C].Boston,MA 1990. 被引量:1
  • 5Stentz A.Optimal and Efficient Path Planning for Partially-Known Environments[A].Proc.ICRA[C].Boston,MA 1994. 被引量:1
  • 6Stentz A.The Focused D* Algorithm for Real-Time Re-planning[A]Proc.IJCAI[C].1995. 被引量:1
  • 7Chien S,Knight R,Stechert A.Integrated Planning and Execution for Autonomous Spacecraft[A].Proceedings of the IEEE Aerospace Conference on IAC[C].Aspen,CO,1999. 被引量:1
  • 8Martin M,Stallard M J.Distributed Satellite Missions and Technologies The TechSat 21 Program[A].Proceedings of the 1999 AIAA Space Technology Conference and Exposition[C].Albuquerque,NM,1999,AIAA-99-4479. 被引量:1
  • 9Dan L G,Paul G.Agent-based Simulation Environment for UCAV Mission Planning and Execution[R].Charles River Analytics,Inc.AIAA-2000-4481.1-11. 被引量:1
  • 10Giles J.Battlespace Assessment Tool Set "BATS"[M].International Aerospace Ltd 1994. 被引量:1

共引文献41

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部